Advanced poly dimethylsiloxane-urea copolymer based masterbatches with multiple functionality

Hans-J. Radusch¹, Matthais Huebner², Friedhelm Roeber², André Wutzler³ and Nadine Poenisch⁴

¹MLU Halle, Germany
²DAW Merchau, Germany
³PSM Merseburg, Germany
⁴KUZ Leipzig, Germany

Optical and esthetic modification is a basic need for polymer application in all technical and consumer fields. Colorants are used in broad volume to satisfy the demand of customers for that purpose. Organic or inorganic colorants are included in a carrier polymer, which should help to dose the colorant precisely, to mix it homogeneously, to be compatible with the matrix, and it should not influence the mechanical and rheological properties unfavourably. A colorant masterbatch on the basis of polydimethylsiloxane-polyurea copolymer (PDUC) was developed. The masterbatch was generated by an innovative processing technology coupling a pre-dispersion step and a fluid component based reactive extrusion step. A specific twin-screw extruder with feeding units is used for the liquid initial components polydimethylsiloxane (PDMS) including the pre-dispersed colorant as well as the diisocyanate. The precise stoichiometric ratio of the components as well as the optimization of residence time of the polymer in the extruder in concern to the reaction time of the components allowed the generation of the PDUC based masterbatch. Different isocyanates and aminopropyl terminated PDMS were used. A higher number of thermoplastics was involved into the investigation of the suitability of the generated masterbatches. Beside the nearly universal applicability of the masterbatch, the improvement of processibility - expressed by lowering of the viscosity, reduction of energy consume of the extruder or reduction of rejection forces at injection molding - could be demonstrated. Thus, the masterbatch proves to be not only an effective colorant, but also an internal lubricant. The good dispersion of the pigment particles was demonstrated by optical microscopy. Stress-strain measurements proved that no significant negative influence of the new masterbatch in concentrations < 5 % on the mechanical properties of the investigated thermoplastics could be observed. Furthermore could be shown that the masterbatch composition and manufacturing technology is suitable as carrier for the inclusion of nano-particles into polymer materials.

Figure 1: Masterbatch generation by coupled dissolver pre-dispersion and reactive twin-screw mixing technology.

Biography

Hans-Joachim Radusch is an expert in the field of the development of new polymer materials by blend and composite technologies under special consideration of nanofillers and nature based polymers. He graduated with a PhD thesis in the field of polymer processing in 1975. After his PhD study, he was employed in industry before he returned to Technical University Merseburg, where he habilitated with a thesis on polymer blends in 1985. 1989 he became a professor of Polymer Materials Technology at the Technical University Merseburg, and 1994 he was called for a full professorship for Polymer Technology at the Martin Luther University Halle-Wittenberg. Since more than 30 years he has a lot of experience in modification of polymers by reactive polymer processing as well as polymer materials characterization.

hans-joachim.radusch@iw.uni-halle.de