Encapsulation of oxynitride phosphors into sintered Li$_2$O-ZnO-B$_2$O$_3$-P$_2$O$_5$-CaF$_2$ glass body

N. Akiyama1, H. Kuwahara1, H. Kuroe1, H. T. Hintzen2 and K. Itatani1

1Sophia University, Japan
2Delft University of Technology, The Netherlands

The conditions for the fabrication of transparent glass body in the Li$_2$O-ZnO-B$_2$O$_3$-P$_2$O$_5$-CaF$_2$ system were examined by a pressureless firing and subsequent oxygen-supplied hot isostatic pressing (O$_2$-HIP). The starting glass was prepared by melting the mixture of LiOH, ZnO, H$_3$BO$_4$, H$_3$PO$_4$ and CaF$_2$ at 1100°C in air, followed by quenching on copper plates cooled by liquid nitrogen. The glass powder compact was pressurelessly-fired at 370°C for 1 h in order to remove the open pores, and the subsequent O$_2$-HIP treatment at 370°C for 24 h under the pressure of 130 MPa made the clear light transmission possible, regardless of the formation of Ca$_2$P$_2$O$_7$ on the surface. The glass body obtained by firing at 370°C for 1 h and the subsequent O$_2$-HIP treatment at 370°C for 24 h was hydrothermally-treated in water at 100°C for 1 h, and found that the mass loss of this body was as low as 0.25%, showing excellent water resistance. When the oxynitride phosphors, i.e., blue-emitting (La$_{0.96}$Ce$_{0.04}$)$_3$Si$_8$O$_{11}$N$_{11}$ and yellow-emitting (Ca$_{0.97}$Eu$_{0.03}$)Si$_2$O$_2$N$_2$, were encapsulated into the glass, no peak shifts in the emission/excitation spectra were found, which demonstrated that no significant degradation of phosphors has occurred during the encapsulation operation. Pseudo-white light emission was observed by the equi-mass addition (total amount: 3 mass%) of (La$_{0.96}$Ce$_{0.04}$)$_3$Si$_8$O$_{11}$N$_{11}$ and (Ca$_{0.97}$Eu$_{0.03}$)Si$_2$O$_2$N$_2$. Overall, the transparent glass body could be fabricated by the pressureless firing and subsequent O$_2$-HIP treatment, and the phosphors were encapsulated into the glass without significant degradation.

Biography

Nanako Akiyama is a student of Sophia graduate school. Her research interest is the luminescence properties of oxide, oxynitride and nitride phosphors, and the encapsulation technique of the phosphors in the glass.

nanako.jennifer@gmail.com