Microstructure and electrical properties of b(Zr$_{0.5}$Ti$_{0.5}$)O$_3$-Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$-Pb(Ni$_{1/3}$Nb$_{2/3}$)O$_3$+xSr$_3$Ti$_2$O$_7$ ceramics

Leilei Li, Feng Gao, Jie Xu, Xiaomeng Gao and Junting Liu
Northwestern Polytechnical University, P.R. China

Pb(Zr$_{0.5}$Ti$_{0.5}$)O$_3$-Pb(Zn$_{1/3}$Nb$_{2/3}$)O$_3$-Pb(Ni$_{1/3}$Nb$_{2/3}$)O$_3$ (PZNNT) ceramics with different content of plate-like Sr$_3$Ti$_2$O$_7$ compound was prepared through conventional solid state methods. The effect of Sr$_3$Ti$_2$O$_7$ amount and the sintering temperature on the microstructures and piezoelectric properties of PZNNT ceramics were investigated. Analyses of phase and microstructure indicated that both of grain size and the content of tetragonal phase at the MPB decreased significantly by increasing Sr$_3$Ti$_2$O$_7$ while dilute the Pb-O covalency with more lower ferroelectric properties. When the Sr$_3$Ti$_2$O$_7$ was 5wt%, the specimen had relative optimum properties due to the close content of tetragonal and rhombohedral phase at the MPB. Additionally, with further increase of sintering temperature for mature grain, the content of tetragonal phase and electric properties of PZNNT-5wt% Sr$_3$Ti$_2$O$_7$ ceramics gradually increased. The optimal piezoelectric and dielectric properties of PZNNT-5wt% Sr$_3$Ti$_2$O$_7$ ceramics sintered at 1040°C for 2h was $d_{33}=572\text{pC/N}$, $d_{33}g_{33}=17630\times10^{-15}\text{m}^2/\text{N}$ and $k_p=0.57$ due to the content of tetragonal and rhombohedral phase coexisted and relative larger grain size ceramics, which is potential candidate materials used for the application in energy harvesting.

lyreve@mail.nwpu.edu.cn