A Review on Application of Evolutionary Techniques on Time Varying Databases

Tapas Ranjan Baitharu¹, Subhendu Kumar Pani²
Associate Prof. Dept. of CSE, Orissa Engineering College, Odisha, India¹
Associate Prof. Dept. of CSE, Orissa Engineering College, Odisha, India²

ABSTRACT: In the context of data mining the feature size is very large and it is believed that it needs a bigger population. Hence, this translates directly into higher computational load. Data and information have become major assets for most of the organizations. The success of any organization depends largely on the extent to which the data acquired from business operations is utilized. Classification is an important task in KDD (knowledge discovery in databases) process. It has several potential applications. The performance of classifiers is strongly dependent on the data set used for learning. This paper reviews the application of evolutionary techniques in data mining for prediction.

Keywords: Data Mining, Particle Swarm Intelligence, Knowledge Discovery Databases.

I. INTRODUCTION

A. DATA MINING AND TIME VARYING DATABASES.
In different kinds of information databases, such as scientific data, medical data, financial data, and marketing transaction data; analysis and finding critical hidden information has been a focused area for researchers of data mining[1][2][4]. How to effectively analyze and apply these data and find the critical hidden information from these databases, data mining technique has been the most widely discussed and frequently applied tool from recent decades. Although the data mining has been successfully applied in the areas of scientific analysis, business application, and medical research and its computational efficiency and accuracy are also improving, still manual works are required to complete the process of extraction.

Data mining is considered to be an emerging technology that has made revolutionary change in the information world. The term ‘data mining’ (often called as knowledge discovery) refers to the process of analyzing data from different perspectives and summarizing it into useful information by means of a number of analytical tools and techniques, which in turn may be useful to increase the performance of a system[3].

Technically, “data mining is the process of finding correlations or patterns among dozens of fields in large relational databases”. Therefore, data mining consists of major functional elements that transform data onto data warehouse, manage data in a multidimensional database, facilitates data access to information professionals or analysts, analyse data using application tools and techniques, and meaningfully presents data to provide useful information.

B. DATA MINING PROCESS

Data Mining is an iterative process consists of the following list of stages:
- Data cleaning
- Data integration
- Data selection
- Data transformation
- Data mining
- Pattern evaluation
- Knowledge presentation
Data cleaning: This task handles missing and redundant data in the source file. The real world data can be incomplete, inconsistent and corrupted. In this process, missing values can be filled or removed, noise values are smoothed, outliers are identified and each of these deficiencies are handled by different techniques.

Data integration: Data integration process combines data from various sources. The source data can be multiple distinct databases having different data definitions. In this case, data integration process inserts data into a single coherent data store from these multiple data sources.

In the data selection process, the relevant data from data source are retrieved for data mining purposes.

Data transformation: This process converts source data into proper format for data mining. Data transformation includes basic data management tasks such as smoothing, aggregation, generalization, normalization and attributes construction.

Data mining: In Data mining process, intelligent methods are applied in order to extract data patterns. Pattern evaluation is the task of discovering interesting patterns among extracted pattern set. Knowledge representation includes visualization techniques, which are used to interpret discovered knowledge to the user.

Pattern Evaluation: During data mining, a large number of patterns may be discovered. However, all those patterns may not be useful in a particular context. It is highly required to assess the usefulness of the discovered patterns based on some criteria, so that truly useful and interesting patterns representing knowledge can be identified.

Knowledge Presentation: Finally, the mined knowledge has to be presented to the decision-maker using suitable techniques of knowledge representation and visualization.

II. EVOLUTIONARY TECHNIQUES FOR DATA MINING

1. GA For Data Mining:
Genetic algorithm is basically used in search, optimization and document. Evolutionary computing (EC) is an exciting development in computer science. It amounts to building, applying and studying algorithms based on the Darwinian principle of natural selection. Genetic algorithm is one of the components of EC. The common underlying idea behind GA is as follows: given a population of individuals, the environmental pressure causes natural selection (survival of the fittest) and here by the fitness of the population is growing. It is easy to see such process as optimization. Given an objective function to be maximized we can randomly create a set of candidate solutions and use the objective function as an abstract fitness measure (the higher the better) based on this fitness some of the better candidate are chosen to seed the next generation by applying recombination and mutation. Recombination is applied to two selected candidates, the so called parents and results in one or two new candidates, the children. Mutation is applied to one candidate and results in one new candidate. Applying recombination and mutation leads to set of new candidates, the offspring. Based on their fitness these offspring compete with the candidates for a place in the next generation. This process can be iterated until a solution is found or a previously set time limit is reached. The general scheme of a genetic algorithm can be given as below:

INITIALISE population with random individuals;
EVALUATE each candidate;
REPEAT UNTIL (TERMINATION CONDITION is satisfied)
 SELECT genitors;
 RECOMBINE pairs of genitors;
 MUTATE the resulting offspring;
 EVALUATE new born candidate;
 SELECT individuals for the next generations;
END OF REPEAT.

Search and retrieval: This technique is used to relate to other related home pages and relevant document is retrieved.
Query optimization

2. PSO for Data Mining
The original PSO was designed as a global version of the algorithm [9], that is, in the original PSO algorithm, each particle globally compares its fitness to the entire swarm population and adjusts its velocity towards the swarm’s global best particle. There are, however, recent versions of local/topological PSO algorithms, in which the comparison process is locally performed within a predetermined neighbourhood topology [7] [8] [9]. Unlike the original version of ACO the original PSO is designed to optimize real-value continuous problems, but the PSO algorithm has also been extended to
optimize binary or discrete problems [10] [11] [12]. The original version of the PSO algorithm is essentially described by
the following two simple — velocity — and — position — update equations, shown in 7 and 8 respectively.

\[
\text{vid}(t+1) = \text{vid}(t) + c1 R1 (\text{pid}(t) - xid(t)) + c2 R2 (\text{pg}(t) - xid(t))
\]

\[
xid(t+1) = xid(t) + \text{vid}(t+1)
\]

Where:
- vid represents the rate of the position change (velocity) of the ith particle in the dth dimension, and t denotes the
time counter.
- xid represents the position of the ith particle in the dth dimension. It is worth noting here that xi is referred to as the
ith particle itself, or as a vector of its positions in all dimensions of the problem space. The n-dimensional problem space
has a number of dimensions that equals to the numbers of variables of the desired fitness function to be optimized.
- pid represents the historically best position of the ith particle in the dth dimension (or, the position giving the best
ever fitness value attained by xi).

Algorithm 1: Basic flow of PSO

1) Initialize the swarm by randomly assigning each particle to an arbitrarily initial velocity and a
position in each dimension of the solution space.
2) Evaluate the desired fitness function to be optimized for each particle’s position.
3) For each individual particle, update its historically best position so far, Pi, if its current position is
better than its historically best one.
4) Identify/Update the swarm’s globally best particle that has the swarm’s best fitness value, and
set/reset its index as g and its position at Pg.
5) Update the velocities of all the particles using above first equation.
6) Move each particle to its new position using above second equation.
7) Repeat steps 2–6 until convergence or a stopping criterion is met (e.g., the maximum number of
allowed iterations is reached; a sufficiently good fitness value is achieved; or the algorithm has not
improved its performance for a number of consecutive iterations).

III. APPLICATION AREAS

There are several applications of data mining. Some common used applications of data mining are given below:

a) Fraud or non-compliance anomaly detection: Data mining isolates the factors that lead to fraud, waste and
abuse. The process of compliance monitoring for anomaly detection (CMAD) involves a primary monitoring system
comparing some predetermined conditions of acceptance with the actual data or event. If any variance is detected (an
anomaly) by the primary monitoring system then an exception report or alert is produced, identifying the specific variance.
For instance credit card fraud detection monitoring, privacy compliance monitoring, and target auditing or investigative
efforts can be done more effectively [5].

b) Intrusion detection: It is a passive approach to security as it monitors information systems and raises alarms
when security violations are detected. This process monitors and analyzes the events occurring in a computer system in
order to detect signs of security problems. Intrusion detection systems (IDSs) may be either host based or network based,
according to the kind of input information they analyze [6]. Over the last few years, increasing number of research projects
(MADAM-ID, ADAM, Clustering project, etc.) have been applied data mining approaches (either host based or network
based) to various problems (construction of operational IDSs, clustering audit log records, etc.) of intrusion detection [13].

c) Lie detection (SAS Text Miner): SAS institute introduced lie-detecting software, called SAS Text Miner. Using
intelligence of this tool, managers can be able to detect automatically

when email or web information contains lies. Here data mining can be applied successfully to
identify uncertainty in a deal or angry customers and also have many other potential applications [14]. Many other
market mining tools are also available in real practice viz. Clementine, IBM's Intelligent Miner, SGI's MineSet, SAS's
Enterprise Miner, but all pretty much the same set of tools.

d) Market basket analysis (MBA): Basically it applies data mining technique in understanding what items are
likely to be purchased together according to association rules, primarily with the aim of identifying cross-selling
opportunities. Sometimes it is also referred to as product affinity analysis. MBA gives clues as to what a customer might
have bought if an idea had occurred to them. So, it can be used in deciding the location and promotion of goods by means of combo-package and also can be applied to the areas like analysis of telephone calling patterns, identification of fraudulent medical insurance claims, etc. [15].

e) Aid to marketing or retailing: Data mining could help direct marketers by providing useful and accurate trends on purchasing behavior of their customers and also help them in predicting which products their customers may be interested in buying. In addition, trends explored by data mining help retail-store managers to arrange shelves, stock certain items, or provide a certain discount that will attract their customers. In fact data mining allows companies to identify their best customers, attract customers, aware customers via mail marketing, and maximize profitability by means of identifying profitable customers [16].

f) Customer segmentation and targeted marketing: Data mining can be used in grouping or clustering customers based on the behaviors (like payment history, etc.), which in turn helps in customer relationship management (epiphany) and performs targeted marketing. Usually it becomes useful to define similar customers in a cluster, holding on good customers, weeding out bad customers, identify likely responders for business promotions.

g) Phenomena of “beer and baby diapers”: This story of using data mining to find a relation between beer and diapers is told, retold and added to like any other legend. The explanation goes that when fathers are sent out on an errand to buy diapers, they often purchase a six-pack of their favorite beer as a reward. An article in The Financial Times of London (Feb. 7, 1996) stated, ”The oft-quoted example of what data mining can achieve is the case of a large US supermarket chain which discovered a strong association for many customers between a brand of babies nappies (diapers) and a brand of beer [17].

h) Financial, banking and credit or risk scoring: Data mining can assist financial institutions in various ways, such as credit reporting, credit rating, loan or credit card approval by predicting good customers, risk on sanctioning loan, mode of service delivery and customer retention (i.e. build profiles of customers likely to use which services), and many others. A credit card company can leverage its vast warehouse of customer transaction data to identify customers most likely to be interested in a new credit product. In addition, data mining can also assist credit card issuers in detecting potentially fraudulent credit card transaction. In general, data mining methods such as neural networks and decision trees can be a useful addition to the techniques available to the financial analyst [18].

i) Medicare and health care: Applying data mining techniques, it is possible to find relationship between diseases, effectiveness of treatments, to identify new drugs, market activities in drug delivery services, etc. However, a pharmaceutical company can analyze its recent sales to improve targeting of high-value physicians and determine which marketing activities will have the greatest impact in the next few months. The data needs to include competitor market activity as well as information about the local health care systems. Such dynamic analysis of the data warehouse allows best practices from throughout the organization to be applied in specific sale situation.

IV. CONCLUSION

To overview, evolution, parameter and the applications of GA and PSO are presented in a simple way. Although PSO has been used mainly to solve unconstrained, single objective optimization problems, PSO algorithms have been developed mainly to solve constrained problems, multi objective optimization problems and problems with dynamically changing landscapes and to find multiple solutions.

REFERENCES

[17] Fuchs G, Data Mining: if only it really were about Beer and Diapers, Information Management Online, July 1, (2004), Available at: http://www.information-management.com/news/1006133-1.html.

[18] Langdell S, Use of data mining in financial applications, (Data Analysis and Visualization Group at NAG Ltd.), Available at: http://www.nag.co.uk/IndustryArticles/DMinFinancialApps.pdf