A REVIEW ON ROBUST FACE DETECTION METHOD USING GABOR WAVELETS

Puneet Kumar Goyal¹, Mradul Jain²

Senior Assistant Professor, Dept. of CSE, ABESEC, Ghaziabad, Uttar Pradesh, India¹

Associate Professor, Dept. of CSE, ABESEC, Ghaziabad, Uttar Pradesh, India²

Abstract- This paper describes a face detection method using Artificial Neural Network (ANN) and Gabor filters. This method achieves rotation invariant and extremely high face detection rate using Gabor wavelets. Gabor filters have optimal localization properties in both spatial and frequency domain. By using these desirable characteristics, Gabor filters extract facial features from the local image. These extracted features work as the input to image classifier which is a Feed Forward Neural Network (FFNN). This network works on a reduced feature subspace learned by an approach simpler than principal component analysis (PCA). Face classification is currently implemented in software. This study gives an impression of Gabor filters in image processing and emphasis on its characteristics of spatial locality and orientation selectivity.

Key Words- Face detection, Gabor wavelet, feed forward neural network classifier, Multilayer perceptron.

I. INTRODUCTION

Human face detection and recognition is an active area of research spanning several disciplines such as image processing, pattern recognition and computer vision. Face detection and recognition are preliminary steps to a wide range of applications such as personal identity verification, video-surveillance, lip tracking, facial expression extraction, gender classification, advanced human and computer interaction. Most methods are based on neural network approaches, feature extraction, Markov chain, skin color, and others are based on template matching [1]. Pattern localization and classification is the step, which is used to classify face and non-face patterns. Many systems dealing with object classification are based on skin color. In this paper we are interested by the design of an ANN algorithm in order to achieve image classification. This paper is organized as follows: In section II, we give an overview over classification for face detection. Description of our model is discussed in Section III. Section IV deals with the training method.

II. CLASSIFICATION FOR FACE DETECTION

While numerous methods have been proposed to detect face in a single image of intensity or color images. A related and important problem is how to evaluate the performance of the proposed detection methods [1]. Many recent face detection papers compare the performance of several methods, usually in terms of detection and false alarm rates. It is also worth noticing that many metrics have been adopted to evaluate algorithms, such as learning time, execution time, the number of samples required in training, and the ratio between detection rates and false alarms.

Face detection can be viewed as two-class Recognition problem in which an image region is classified as being a “Face” or “nonFace”. Consequently, face detection is one of the few attempts to recognize from images a class of objects for which there is a great deal of within-class variability. Face detection also provide interesting challenges to the underlying pattern classification and learning techniques. The class of face and no face image are decidedly characterized by multimodal distribution function and effective decision boundaries are likely to be nonlinear in the image space.

Pattern localization and classification are CPU time intensive being normally implemented in software, however with lower performance than custom implementations. Custom implementation in hardware allows real-time processing, having higher cost and time-to-market than software implementation. Some works [2,3,4] uses ANN for classification, and the system is implemented in software, resulting in a good performance (10 sec for localization and classification). A similar work is presented in [5], aiming to object localization and classification.

We are interested in the implementation of an ANN algorithm & design of a Gabor filter in order to provide better image classification. The MLP (Multi-layer Perceptron) algorithm is used to classify face and non-face patterns before the recognition step.
III. MULTI-LAYERS PERCEPTRON

The MLP neural network [1] has feed forward architecture within input layer, a hidden layer, and an output layer. The input layer of this network has N units for an N dimensional input vector. The input units are fully connected to the I hidden layer units, which are in turn, connected to the J output layers units, where J is the number of output classes.

A Multi-Layers Perceptron (MLP) is a particular of artificial neural network [7]. We will assume that we have access to a training dataset of l pairs (x_i, y_i) where x_i is a vector containing the pattern, while y_i is the class of the corresponding pattern. In our case a 2-class task, y_i can be coded 1 and -1.

![Fig.1 The neuron of supervised training.](image)

We considered a MLP (Multi-Layers Perceptron) with a 3 layers, the input layer is a vector constituted by n^2 units of neurons ($n \times n$ pixel input images). The hidden layer has n neurons, and the output layer is a single neuron which is active to 1 if the face is presented and to otherwise. The activity of a particular neuron j in the hidden layer is written by

$$S_j = \sum w_{ji} x_i, x_i = f(s_j)(1), f(1)$$

a sigmoid function. Where W_{1i} is the set of weights of neuron i, b_{1i} is the threshold and x_i is an input of the neuron. Similarly the output layer activity is

$$S_j = \sum w_{ji} x_i$$

In our system, the dimension of the retina is 27x18 pixels represent human faces and non-face, the input vector is constituted by 2160 neurons, the hidden layer has 100 neurons.

We are designing a feed forward neural network with one hundred neurons in the hidden layer and one neuron in the output layer. Prepares images for training phase.

![Fig.2 (a) Architecture of proposed system](image)

All data form both “face” and “non-face” folders will be gathered in a large cell array. Each column will represent the features of an image, which could be a face, or not. Rows are as follows:

Row 1: File name
Row 2: Desired output of the network corresponded to the feature vector.
Row 3: Prepared vector for the training phase

We will adjust the histogram of the image for better contrast. Then the image will be convolved with Gabor filters by...
multiplying the image by Gabor filters in frequency domain. To save time they have been saved in frequency domain before Features is a cell array contains the result of the convolution of the image with each of the forty Gabor filters. These matrices have been concatenated to form a bif 135x144 matrix of complex numbers. We only need the magnitude of the result. That is why “abs” is used. 135x144 has 10,400 pixels. It means that the input vector of the network would have 19,400 values, which means a large amount of computation. So we have reduced the matrix size to one-third of its original size by deleting some rows and columns. Deleting is not the best way but it save more time compared to other methods like PCA. We should optimize this function as possible as we can.

First training the neural network and then it will return the trained network. The examples were taken from the Internet database. The MLP will be trained on 500 face and 200 non-face examples.

IV. TRAINING METHODOLOGY
The MLP with the training algorithm of feed propagation is universal mappers, which can in theory, approximate any continuous decision region arbitrarily well. Yet the convergence of feed forward algorithms is still an open problem. It is well known that the time cost of feed forward training often exhibits a remarkable variability. It has been demonstrated that, in most cases, rapid restart method can prominently suppress the heavy-tailed nature of training instances and improve efficiency of computation. Multi-Layer Perceptron (MLP) with a feed forward learning algorithms was chosen for the proposed system because of its simplicity and its capability in supervised pattern matching. It has been successfully applied to many pattern classification problems [9]. Our problem has been considered to be suitable with the supervised rule since the pairs of input-output are available.

For training the network, we used the classical feed forward algorithm. An example is picked from the training set, the output is computed.

V. ALGORITHM DEVELOPMENT AND RESULTS
VI. 2D GABOR WAVELET REPRESENTATION OF FACES

Since face recognition is not a difficult task for human beings, selection of biologically motivated Gabor filters is well suited to this problem. Gabor filters, modeling the responses of simple cells in the primary visual cortex, are simply plane waves restricted by a Gaussian envelope function [22].

An image can be represented by the Gabor wavelet transform allowing the description of both the spatial frequency structure and spatial relations. Convolving the image with complex Gabor filters with 5 spatial frequency ($v = 0, \ldots, 4$) and 8 orientation ($\mu = 0, \ldots, 7$) captures the whole frequency spectrum, both amplitude and phase (Figure 5).

In Figure 6, an input face image and the amplitude of the Gabor filter responses are shown above. One of the techniques used in the literature for Gabor based face recognition is based on using the response of a grid representing the facial topography for coding the face. [23, 25, 26, 27]. Instead of using the graph nodes, high-energized points can be used in comparisons which forms the basis of this work. This approach not only reduces computational complexity, but also improves the performance in the presence of occlusions.

A. Feature extraction
Feature extraction algorithm for the proposed method has two main steps in (Fig. 8): (1) Feature point localization,(2) Feature vector computation.

B. Feature point localization
In this step, feature vectors are extracted from points with high information content on the face image. In most feature-based methods, facial features are assumed to be the eyes, nose and mouth. However, we do not fix the locations and also the number of feature points in this work. The number of feature vectors and their locations can vary in order to better represent diverse facial characteristics of different faces, such as dimples, moles, etc., which are also the features that people might use for recognizing faces (Fig. 7).
From the responses of the face image to Gabor filters, peaks are found by searching the locations in a window W_0 of size $W_1 \times W_2$ by the following procedure:

A feature point is located at (x_0, y_0), if

$$R_f(x_0, y_0) = \max_{(x, y) \in W_0} R_j(x, y)$$

where R_j is the response of the face image to the j^{th} Gabor filter $N_1 \times N_2$ is the size of face peaks of the responses. In our experiments a 9×9 window is used to search feature points on Gabor filter responses. A feature map is constructed for the face by applying above process to each of 40 Gabor filters.

Fig. 7 Facial feature points found as the high-nergized points of Gabor wavelet responses.

Fig. 8: Flowchart of the feature extraction stage of the facial images.
A. Feature vector generation

Feature vectors are generated at the feature Points as a composition of Gabor wavelet transform coefficients. k^{th} feature vector of i^{th} reference face is defined as,

$$v_{j,k} = \{x_k, y_k, R_i, j(x_k, y_k) \mid j=1,\ldots,40\}$$ \hspace{1cm} (5)

While there are 40 Gabor filters, feature Vectors have 42 components. The first two components represent the location of that feature point by storing (x, y) coordinates. Since we have no other information about the locations of the feature vectors, the first two components of feature vectors are very important during matching (comparison) process. The remaining 40 components are the samples of the Gabor filter responses at that point. Although one may use some edge information for feature point selection, here it is important to construct feature vectors as the coefficients of Gabor wavelet transform. Feature vectors, as the samples of Gabor wavelet transform at feature points, allow representing both the spatial frequency structure and spatial relations of the local image region around the corresponding feature point.

1) **First Section:**

![Center of potential face-contained windows](image1)

![Neural network](image2)

Fig. 9

2) **Second Section:**

In this section the algorithm will check all potential face-contained windows and the windows around them using neural network. The result will be the output of the neural network for checked regions.

![Cellnet](image3)

Fig. 10.1 Cell .net

3) **Third Section:**

![Filtering pattern for values above threshold](image4)

![Dilating pattern with a disk structure](image5)

Fig10.3 Dilating pattern with a disk structure (xy_)

Fig10.4 Finding the center of each region

Fig. 10.5 Draw a rectangle for each point
This architecture was implemented using Matlab in a graphical environment allowing face detection in a database. It has been evaluated using the test data of 500 images containing faces, on this test set we obtained a good detection.

VII. CONCLUSION & FUTURE WORK

In this paper, a new approach to face detection with Gabor wavelets& feed forward neural network is presented. The method uses Gabor wavelet transform & feed forward neural network for both finding feature points and extracting feature vectors. From the experimental results, it is seen that proposed method achieves better results compared to the graph matching and eigenface methods, which are known to be the most successive algorithms. In the proposed algorithm, since the facial features are compared locally, instead of using a general structure, it allows us to make a decision from the parts of the face. For example, when there are sunglasses, the algorithm compares faces in terms of mouth, nose and any other features rather than eyes. Moreover, having a simple matching procedure and low computational cost proposed method is faster than elastic graph matching methods. Proposed method is also robust to illumination changes as a property of Gabor wavelets, which is the main problem with the eigenface approaches. A new facial image can also be simply added by attaching new feature vectors to reference gallery while such an operation might be quite time consuming for systems that need training. Although detection performance of the proposed method is satisfactory by any means, in future it would be further improved with some small modifications and/or additional preprocessing of face images. Such improvements can be summarized as:

1) A set of weights can be assigned to these feature points by counting the total times of a feature point occurs at those responses.
2) When there is a video sequence as the input to the system, a frame giving the “most frontal” pose of a person should be selected to increase the performance of face detection algorithm. 3) In order to further speed up the algorithm, number of Gabor filters could be decreased with an acceptable level of decrease in detection performance.

REFERENCES

[10] Xiaoguang Li and shawki Areibi,”A Hardware/Software co-design Approach for Face Recognition”, 16th International Conference on

PUNEET KUMAR GOYAL is Senior Assistant Professor in Computer Science & Engineering Department, ABES Engineering College, Ghaziabad, Uttar Pradesh. He has completed his B.Tech in Computer Science & Engineering from BIT Durg. He has completed his M.Tech in Computer Science & Engineering form NRIIST Bhopal, Madhya Pradesh.

Mradul Jain is Associate Professor in Computer Science & Engineering Department, ABES Engineering College Ghaziabad, Uttar Pradesh. He has completed his B.Tech from Institute of Integral Technology, Lucknow. He has completed his M.Tech from Shobhit University, Meerut U.P. He has also completed PGDIT from Symbiosis, Pune. He has published 5 Research Papers in various International Conferences and Journals.