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ABSTRACT: Dynamic loading of software components (e.g., libraries or modules) is a widely used mechanism for 
improved system modularity and flexibility. In general, an operating system or a runtime environment resolves the loading 
of a specifically named component by searching for its first occurrence in a sequence of directories determined at runtime. 
Correct component resolution is critical for reliable and secure software execution, however, programming mistakes may 
lead to unintended or even malicious components to be resolved and loaded. In particular, dynamic loading can be hijacked 
by placing an arbitrary file with the specified name in a directory searched before resolving the target component. Although 
this issue has been known for quite some time, it was not considered serious because exploiting it requires access to the 
local file system on the vulnerable host. Recently such vulnerabilities started to receive considerable attention as their 
remote exploitation became realistic; it is now important to detect and fix these vulnerabilities. 
 

I. INTRODUCTION 
 

Dynamic loading is an important mechanism for software development. It allows an application the flexibility to 
dynamically link a component and use its exported functionalities. Its benefits include modularity and generic interfaces for 
third-party software such as plug-ins. It also helps to isolate software bugs as bug fixes of a shared library can be easily 
incorporated. For these advantages, dynamic loading is widely used in designing and implementing software.A key step in 
dynamic loading is component resolution, i.e., how to locate the correct component for use at runtime. Operating systems 
generally provide two resolution methods, either specifying the fullpath or the filename of the target component. With 
fullpath, operating systems simply locate the target from the given full path. With filename, operating systems resolve the 
target by searching a sequence of directories, determined by the runtime directory search order, to find the first occurrence 
of the component. 
Although flexible, this common component resolution strategy has an inherent security problem. Since only a file name is 
given, unintended or even malicious files with the same file name can be resolved instead. Thus far this issue has not been 
adequately addressed. Operating systems may provide mechanisms to protect system resources, such as Windows Resource 
Protection (WRP)  in Microsoft Windows Vista. However, these do not prevent loading of a malicious component located 
in a directory searched before the directory where the intended component resides. 
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The problem of unsafe dynamic loading had been known for a while, but it had not been considered a serious threat because 
its exploitation requires local file system access on the victim host. The problem has started to receive more attention due to 
recently discovered remote code execution attacks. Here is an example attack scenario. An attacker sends an archive file 
containing a document for a vulnerable program (e.g., a Word document) and a malicious DLL to a victim. If the victim 
opens the document, the vulnerable program will load the malicious DLL and the host machine can be subverted in more 
detail potential remote code execution attack vectors exploiting vulnerable dynamic component loading. 

II. EXISTING APPROACH 

Existing system provides  the first static binary analysis aiming at detecting all possible loading-related errors. The key 
challenge is how to scalably and precisely compute what components may be loaded at relevant program locations. Our 
main insight is that this information is often determined locally from the component loading call sites.  

This motivates us to design a demand-driven analysis, working backward starting from the relevant call sites. In particular, 
for a given call site c, we first compute its context-sensitive executable slices, one for each execution context. Then we 
emulate the slices to obtain the set of components possibly loaded at c. This novel combination of slicing and emulation 
achieves good scalability and precision by avoiding expensive symbolic analysis. We implemented our technique and 
evaluated its effectiveness against the existing dynamic technique on nine popular Windows applications. Results show that 
our tool has better coverage and is precise—it is able to detect many more unsafe loadings. It is also scalable and finishes 
analyzing all nine applications in not possible. 

III. PROPOSED FRAMEWORK 
 
Dynamic loading of software components is a commonly used mechanism to achieve better flexibility and modularity in 
software. For an application’s runtime safety, it is important for the application to load only its intended components. 
However, programming mistakes may lead to failures to load a component, or even worse, to load a malicious component.  

Recent work has shown that these errors are both prevalent and severe, sometimes leading to remote code execution 
attacks. The work is based on dynamic analysis by monitoring and analyzing runtime component loadings. Although simple 
and effective in detecting real errors, it suffers from limited code coverage and may miss importantvulnerabilities. Thus, it 
is desirable to develop effective techniques to detect all possible unsafe component loadings automatically. Dynamic profile 
generation 

           In this phase,instrument runtime executions of the binary executable under analysis to capture a sequence of 
system-level actions for dynamic loading of components. In particular,  collect three types of information during the 
instrumented program execution: system calls invoked for dynamic loading, image loading, and process and thread 
identifiers. The collected information is stored as a profile for the instrumented application and will be analyzed in the 
offline profile analysis phase. 

System calls invoked for dynamic loading System call analysis is a widely used analysis technique to understand program 
behavior because a sequence of invoked system calls (with names of the invoked functions and their arguments) can 
provide useful information on program execution. To capture system-level actions for dynamic component loading, we 
instrument system calls that cover all possible control-flow paths of the dynamic loading procedure, which enables us to 
reconstruct the procedure offline. 

Besides the name of an instrumented system call, also collect its parameter information for detecting unsafe component 
resolutions. Specifically, the target component specification and the directory search order can be obtained from the system 
call parameters. Although the directory search order can vary according to the underlying system and program setting, it is 
computed by operating systems at the higher-level and provided as parameters to the relevant system calls for dynamic 
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loading. Furthermore, results of the instrumented system calls provide both the control flow in the loading procedure and 
error messages generated by the operating systems. Such information is used for the reconstruction of the dynamic loading 
procedure and the detection of unsafe component resolutions. 

Image loadings  also capture actual loadings of target components via dynamic binary instrumentation. The loading 
information is needed for reconstructing the loading procedure in combination with the information captured by system call 
instrumentation. It also indicates the resolved full path determined by the loading procedure. We use this resolved path to 
detect resolution hijacking. 

Process and thread identifiers, because the approach is based on system callinstrumentation, it is important to consider 
multi-threaded applications. If the target program uses multi-threads and each thread loads a component dynamically, the 
instrumented system calls for each loading can be interleaved, which makes it difficult to correctly reconstruct the loading 
procedure of each thread. To solve this problem, capture process and thread identifiers along with the other information on 
instrumented system calls. 

IV. OFFLINE PROFILE ANALYSIS 
 
In this phase, extract each component loading from the profile and detect defects in the resolution of a target component and 
its dependent components .In the first step of this offline phase, extract each component loading from the profile. To this 
end, first group a sequence of actions in the profile by process and thread identifiers as the actions performed by different 
threads may be interleaved due to context switching. This grouping separates the sequences of dynamic loadings performed 
by different threads. Next, we divide the sequence for each thread into sub-sequences of actions, one for each distinct 
dynamic loading. This can be achieved by using the first invoked system call for dynamic loading (e.g., dlopen) as a 
delimiter. After this step,  obtain a list of groups, each of which contains a sequence of actions for loading a component at 
runtime. This gives the possible control-flows in the dynamic loading procedure. Note that each group contains loading 
actions for both the target component and the load-time dependent components. 
The analysis detects the two types of unsafe component resolution .Resolution failure and resolution hijackingwhich are 
directly derived from the definition of each unsafe component resolution, for each component loading. 
 
Resolution failure of target component To detect failed resolution of a target component,  simply check the number of 
image loads and failed resolutions during the dynamic loading procedure. In particular, if no image is loaded and its 
resolution is failed, report it as a resolution failure. 
Resolution hijacking of target component Lines 10–15 describe how to detect resolution hijacking of a target component. 
First check whether the target component is specified by its file name, because a full path specification does not iterate 
through the search directories for resolution. If the file name is used, we retrieve the resolved path of the target component 
by retrieving the first element of a list of image loads in the dynamic loading procedure.   

Detect unsafe components 

1. To detect unsafe components,we first capture a sequence of system level actions during a program execution. 

2. We use binary instrumentation to generate its runtime profile,then we check safety conditions for each resolution. 

3. Binaryexecutables is robust,not only used for open source but also used for commercial off-the-shelf products 

Background on DLL loading procedure 

1) Target DLL resolution: Microsoft Windows supports the two aforementioned types of target DLL specifications: fullpath 
and filename. For the filename specification, there exist Windows-specific mechanisms to resolve target DLLs. In 
particular, Microsoft Windows supports Side-by-Side Assembly and maintains Known DLLs to determine the target DLL 
fullpath directory without iterating through the directories .  
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V. CONCLUSION 
 
In this paper, it described a dynamic analysis technique to detect unsafe dynamic component loadings. The technique works 
in two phases. It first generates profiles to record a sequence of component loading behaviors at runtime using dynamic 
binary instrumentation. It then analyzes the profiles to detect two types of unsafe component loadings: resolution failures 
and resolution hijackings. To evaluate the technique, here implemented a tool to detect unsafe DLL loadings on Microsoft 
Windows.Evaluation shows that unsafe DLL loading is prevalent and can lead to serious threats. In particular, the tool 
detected more than 1,700 unsafe DLL loadings in popular software developed by major vendors. It also discovered 
potential remote code execution attacks exploiting the detected unsafe DLL loadings 

 
VI. FUTURE WORK 

 
We plan to analyze unsafe component loadings in Unix-like operating systems. As we mentioned in Section VI, unsafe 
component loading is a general security concern, and our approach is general and can also be applied to analyze 
applications on these systems. We plan to evaluate the prevalence and severity of unsafe component loading for these other 
important operating systems. Second, we plan to develop static binary analysis techniques to detect unsafe component 
loadings. Although our dynamic analysis is effective, it may suffer from the standard limitation of dynamic analysis, 
namely the code coverage problem. We plan to develop sound, practical static analysis techniques to complement the 
dynamic analysis introduced here. 
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