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INTRODUCTION
Suppose we have a random sample of size n1, x11, x12, x13, ……x1n1 for N(μ1,σ1

2) and a second random sample of size n2, x21, 
x22, x23, . . . x2n2 for N(μ2,σ

2
2 ). It is desired to test H0: u1= u2 against H1: u1≠u2. If σ1 and σ2 are both known a normal test is used. If 

σ1=σ2 but both are unknown a t-test is commonly used with the test statistics.
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A t-test is a type of statistical test that is used to compare the means of two groups, such as men vs. women, athletes vs. 
non-athletes, young vs. elderly, or you may want to compare means measured on a single group under two different experimental 
conditions or at two different times. T-tests are a type of parametric method; they can be used when the samples satisfy the 
conditions of normality, equal variance, and independence. T-tests can be divided into two types. There is the independent t-test, 
which can be used when the two groups under comparison are independent of each other, and the paired t-test, which can be 
used when the two groups under comparison are dependent on each other. If σ1≠σ2 and both are unknown then we are confronted 
with the Behrens-Fisher problem. There is no universally accepted testing procedure for this problem although arrays of tests have 
been developed and will be discussed in the Review of Literature. Behrens [1] proposed the statistics.
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In the literature, there is a modified test statistic (t-test) when the assumption of equal variances is violated has been known 
as the Behrens-Fisher problem [1,2]. Early investigations showed that the problem can be overcome by substituting separate-
variances tests, such as the ones introduced by Welch [3,4], and Satterthwaite [5], for the Student t-test. These modified significance 
tests, unlike the usual two-sample Student t-test, do not pool variances in the computation of an error term. Moreover, they alter 
the degrees of freedom by a function that depends on sample data. It has been found that these procedures in many cases re-
store Type I error probabilities to the nominal significance level and also counteract increase or decrease of Type II error [6-9].

Student’s t-test is univariate and analog to Hotelling T square which is the multivariate version of T-test and this Hotelling’s 
T2 has three basic assumptions that are fundamental to the statistical theory: independent, multivariate normality and equality of 
variance-covariance matrices. A statistical test procedure is said to be robust or insensitive if departures from these assumptions 
do not greatly affect the significance level or power of the test.

To use Hotelling’s T2 one must assume that the two samples are independent and that their variance-covariance matrices 
are equal (Σ1=Σ2=Σ). When variance-covariance matrices are not homogeneous and unknown, the test statistic will not be distrib-
uted as a T2. This predicament is known as the multivariate Behrens-Fisher problem.

The Behrens-Fisher Problem addresses interval estimation and hypothesis testing concerning the differences between the 
means of two normally distributed populations when the variances of the two populations are not equal. While Multivariate Beh-
rens-Fisher problem deal with testing the equality of two normal mean vectors under heteroscedasticity of dispersion matrices. 
These are the some of the existing Multivariate Behrens-Fisher problem: Yao [10], Johansen [11], Nel et al [12], Kim [13], Krishnamoor-
thy and Yu [14], Gamage et al [15] Yanagihara and Yuan [16],and Kawasaki and Seo [17] and so on. But with all these procedures there 
is no one with a hundred percent (100%) satisfactory in term of power of the test and type I error rate. And each of these scholars 
works on the degree of freedom using a different method which is classified into four (4): Approximate degree of freedom tests, 
Series expansion-based tests, Simulation-based tests, and Transformation-based tests.

Scheffe [18],Lauer and Han [19], Lee and Gurland [20], Murphy [21], Yao [10], Algina and Tang [22], Kim [13], De la Rey and Nel’s [23], 
Christensen and Rencher [24] , Oyeyemi and Adebayo [25]. All these authors mentioned and many more have work on the compari-
son of some of the Multivariate Behrens-Fisher problem procedures. 

The purpose of this work is to develop an alternative procedure for multivariate data that will be robust compared to other 
procedures and the work will begin with an introduction to the statistical notation that will be helpful in understanding the con-
cepts. This is followed by a discussion of procedures that can be used to test the hypothesis of multivariate mean equality when 
statistical assumptions are and are not satisfied. We will then show how to obtain a test that is robust to the covariance hetero-
geneity.

MULTIVARIATE BEHRENS–FISHER PROBLEM (EXISTING PROCEDURE)

Consider two p-variate normal populations ( )11
,  N µ Σ and ( )22

,  N µ Σ where 
1

µ and 
2

µ  are unknown p × 1 vector and Σ1 and Σ2 are 

unknown p × p positive definite matrices.

Let ( )1 1 1 1 ~ , Σ , 1, 2,   .  .  .  ,  X N nµ α∝ = , and

( )2 2 2 2 ~ , Σ , 1, 2,   .  .  .  ,  X N nµ α∝ = , denote random samples from these two populations, respectively. We are interested 

in the testing problem
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Then 21 1, ,X X A and 2A , which are sufficient for the mean vectors and dispersion matrices, are independent random vari-
ables having the distributions:

( ) ~ , ,   ~ 1,  , 1, 2i
i i i p i i

i

X N and A W n i
n

µ ∑
∑

 
− = 

 

Where Wp(r,Σ)denotes the p -dimensional wishart distribution with df=r and scale matrix Σ.

 / ,   1, 2 i i iS S n i= =
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The following are the existing procedures or solutions to Multivariate Behrens-Fisher problem considered in this study 

Yao Procedure

Yao [10], invariant test. This is a multivariate extension of the Welch ‘approximate degree of freedom’ solution provided by 
Turkey and the test statistic is based on a transformation of Hotelling T2. And is based on ( )( )2

, 1 ~  / 1 p v pT vp v p F − +− + with the 
degrees of freedom v given by
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Statistical significance is then assessed by comparing the TYao statistic to its critical value Fα(p,v-p+1), that is, a critical value 
from the F distribution with p and v–p+1 degrees of freedom (df)

Johansen Procedure

Johansen [11], invariant test, Yanagihara and Yuan [16], Kawasaki and Takashi [17]. They used T2 ~ qFpv where
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And his proposed test statistic 

2

Johan
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q

=

Statistical significance is then assessed by comparing the TJohan statistic to its critical value Fα(p,vJoh), that is, a critical value 
from the F distribution with p and vJoh degrees of freedom (df).

Nel and Van der Merwe (1986) noninvariant solution

Here we use

( )( )2
, 1 ~  / 1

NvNv Nv p v pT v p v p F − +− + except that v is defined by
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Krishnamoorthy and Yu (2004)’s, Lin and Wang (2009), Modified Nel/ Van der Merwe Invariant Solution

We use the idea as before, namely,
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Statistical significance is then assessed by comparing the TKrish statistic to its critical value Fα (p,v_kY-p+1), that is, a critical 
value from the F distribution with p and v_kY-p+1 degrees of freedom (df)

Yanagihara and Yuan Procedure used the Series Expansion Based Test to Developed an Alternative Procedure to Multivari-
ate Behrens-Fisher problem
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Hotelling’s T2
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The test statistic can also be converted to an F statistic,

( ) 1
1

2hotel
N pv T
p N
− −

=
−

Where N=n1+n2. Statistical significance is then assessed by comparing the vhotel statistic to its critical value Fα (p, N-p-1), that 
is, a critical value from the F distribution with p and N-p-1 degrees of freedom (df).

THE MEAN AND VARIANCE OF THE CHI-SQUARE DISTRIBUTION WITH N DEGREES 
OF FREEDOM

The chi-square distribution is defined with n degrees of freedom by 

2 2 2 2
1 2  .  .  . n nZ Z Zχ = + + + , where Z1,Z2,…...Zn are independent random variables, each with distribution N(0,1).

Find the expected value and variance of both sides, then we have

( ) ( ) ( )2 2 2
1   .  .   .  n nE E Z E Zχ = + + and

( ) ( ) ( )2 2 2
1   .  .   .  n nVar Var Z Var Zχ = + +

And all the instances of Zi have identical distributions, then
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nE nE Zχ = and

( ) ( )2 2
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Where Z is the random variable with distribution N(0, 1). Then
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For Var(Z2)
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Var(Z2)=E(Z4)-1	 	 	 	 	 	 	 	 	 	 	 	               (2)

To find E(Z4), we will use the fact that for any continuous random variable X with probability density function f, and any exponent k,
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By integration by parts, we have, ( )
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Therefore substitute equation (3) into equation (2) then we have

( )2 3 1 2,Var Z = − = that is ( )2 .2 2nVar n nχ = =  								                                   (4) 

For two sample t-test, we will limit this work to the version of the test where we do not assume that the two populations have equal 
variances. Let random sample x1,…,xn1 from a random variable X with distribution N(μ1,σ1) and a random sample y1,….,yn2 from a 
random variable Y with distribution (μ2,σ2). We have 
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 Strictly speaking, this statistic does not follow t-distribution, therefore;
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For t to bet–distribution, there would have to be some multiple of 2
Bs  that is chi-square distribution and this is not the case. 

However, remember that in the one-sample case, ( ) 2
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Equating the equation (5) and (6)
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Substitute equation (9) into equation (8)
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Substitute equation (10) into equation (7)
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In practice, the values of the population variances, σ1
2 and σ2

2, are unknown, and so we replace σ1
2, σ2

2, and σB
2 by their 

estimators s1
2, s1

2 and sB
2 also 
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MULTIVARIATE APPROACH
We shall consider the test statistic y'S-1 y and use Univariate Satterthwaite approximation of degrees of freedom method to 

suggest multivariate generalization based on the T2–distribution. We have

1 2  1 2
ˆ ˆ ˆ,      i

i
i

SS S S S and y X X
n

= + = = −

( )  0, y N ∑
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Multivariate of a version of equation (5) is equation (12)
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Put equation (14) into equation (13)
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Multivariate of a version of equation (9) is
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Put equation (16) into equation (15)
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Equation (17) becomes
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The values of the population variances Σi are unknown, and so we replace Σi and b'Σb by their estimators Si and b'Sb
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Put equation (14) into equation (18) to have

( ) ( )

( ) ( )
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Set b=S-1 y then equation (19) becomes

( )
( )

( )
( )
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1 2
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1 2
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
′
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+
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 								                               (20)

Equation (20) can be in this form
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( ) ( )
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 1
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yS S S y
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 
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−

∑

∑
 										                   (21)

Let 
1 2  y X X= − then equation (22) become
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prop

f p T
T

f p
− +

=
×

 										                                   (23)

Then equation (23) is the test statistic of the proposed procedure. Statistical significance is then assessed by comparing 
the TProp statistic to its critical value Fα(p,fprop-p+1), that is, a critical value from the F distribution with p and fprop-p+1 degrees of 
freedom (df)

SIMULATION STUDY
A simulation study using R package was conducted in order to estimate and compare the Type I error rate and power for 

each of the previously discussed approximate solution [10,11,14], Proposed procedure, Hotelling’s T square, [14,16]. The simulations are 
carried out when the null hypothesis is true and not true, for Multivariate normal distribution, when there are unequal variance-
covariance matrix. Five (5) factors were varied in the simulation: the sample size, the number of variables p, variance covari-
ance matrices, mean vectors, and significant levels. For each of the above combinations, an ni ×p data matrix Xi(i=1 and 2) were 
replicated 1,000. The comparison criteria; type I error rate and power of the test were therefore obtained and the results were 
presented in both tabular.

The following are the levels used for each of the three factors.

Table 1. Levels used for each of the three factors.

Multivariate Distribution P α Sample size

Normal
2, 3, 4 0.01 20, 10
2, 3, 4 0.025 50, 30
2, 3, 4 0.05 100, 60

These levels provide 36-factor combinations the values for sample size are shown in Table 1.

RESULT
Table 2. Power of the test.

P=2  α=0.01

X1=(20 30)    1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.3852 0.3872 0.3872 0.3861 0.2146 0.3915 0.2487

X2=(10 30) 
50, 30 0.8332 0.8349 0.8346 0.8374 0.6672 0.8348 0.7691

100, 60 0.991 0.9911 0.9911 0.9912 0.9497 0.9911 0.9865

1

267 200
200 267
 

=  
 

S
 

 α=0.025

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.5037 0.5043 0.5045 0.5037 0.3158 0.508 0.3787

50, 30 0.8903 0.8911 0.8909 0.8926 0.7609 0.891 0.8528
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2

35 25
25 35
 

=  
 

S
 

100, 60 0.9959 0.9959 0.9959 0.996 0.973 0.9959 0.9941

 α=0.05

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

( )1 2 10 0− =x x      

20, 10 0.6106 0.6105 0.6104 0.6099 0.4201 0.6133 0.5092

50, 30 0.9319 0.932 0.9319 0.9329 0.8348 0.932 0.911

100, 60 0.9982 0.9982 0.9982 0.9983 0.9855 0.9982 0.9975

From the Table 2 Nel and Van der Merwe have the highest power of the test when the sample sizes are small (20, 10) but at 
(50, 30) and (100, 60) the proposed procedure has the highest power than all other procedures.

Table 3. Type I error rate.

P=2  α=0.01

X1=(20 30)    1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.011 0.011 0.011 0.01 0.002 0.011 0.002

 X2=(20 30)
50, 30 0.007 0.007 0.007 0.007 0.001 0.006 0.004

100, 60 0.008 0.008 0.008 0.008 0 0.008 0.008

1

267 200
200 267
 

=  
 

S  

 α=0.025

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.017 0.017 0.017 0.018 0.003 0.018 0.005
50, 30 0.026 0.027 0.026 0.027 0.008 0.026 0.015

  2

35 25
25 35
 

=  
 

S

100, 60 0.015 0.015 0.015 0.015 0.002 0.015 0.009
 α=0.05

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

  ( )1 2 0 0− =x x     
20, 10 0.048 0.049 0.049 0.048 0.006 0.049 0.023
50, 30 0.045 0.044 0.045 0.046 0.011 0.045 0.035

100, 60 0.057 0.057 0.057 0.057 0.016 0.057 0.051

From Table 3, when the sample size is (20,10) the proposed procedure is on nominal level exactly while Hoteling T square 
and Yanagihara [16] are below the nominal level, but at (50,30) and (100,60) all the procedures are below the nominal level, at 
significant level 0.01. At α=0.025, all the procedures are inflated at (50,30) and deflated at (20,10) and (100,60).

Table 4. Power of the test.

P=3  α=0.01

  ( )1 30 24 50=x   1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.2029 0.2198 0.2054 0.2147 0.1313 0.2278 0.0895

  ( )2 15 14 29=x 50, 30 0.6107 0.6182 0.6154 0.6217 0.4472 0.6203 0.5187
100, 60 0.9295 0.9312 0.9307 0.9322 0.8107 0.9315 0.9073

 

1

500 450 350
450 500 180
350 180 500

 
 =  
 
 

S

 

 α=0.025

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.2954 0.312 0.2983 0.3062 0.206 0.3205 0.1684
50, 30 0.7137 0.7195 0.7173 0.7222 0.5602 0.7209 0.6451

2

90 30 20
30 90 10
20 10 90

 
 =  
 
 

S

 

100, 60 0.9596 0.9606 0.9603 0.9611 0.877 0.9608 0.9478
 α=0.05

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

( )1 2 15 10 21− =x x
 

20, 10 0.4095 0.4255 0.4122 0.4207 0.3002 0.4334 0.2743
50, 30 0.7952 0.7992 0.7978 0.8012 0.6624 0.8003 0.7475

100, 60 0.9754 0.976 0.9758 0.9763 0.9199 0.9761 0.9692

From Table 4, It is obvious that proposed procedure performed better than all other procedures at (50,30) and (100, 60) but 
Nel and Van der Merwe is better when the sample size is (20,10) in all the scenarios considered.
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Table 5. Type I error rate.

P=3  α=0.01

( )1 30 24 50=x  
  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.007 0.008 0.008 0.006 0.014 0.013 0

( )2 15 14 29=x
 

50, 30 0.011 0.01 0.011 0.09 0.013 0.011 0.006
100, 60 0.015 0.015 0.015 0.015 0.018 0.015 0.013

 

1

500 450 350
450 500 180
350 180 500

 
 =  
 
 

S

 

 α=0.025

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.035 0.033 0.035 0.027 0.033 0.041 0.003
50, 30 0.025 0.027 0.026 0.024 0.032 0.028 0.011

 

2

90 30 20
30 90 10
20 10 90

 
 =  
 
 

S

100, 60 0.029 0.031 0.031 0.03 0.039 0.031 0.026
 α=0.05

  1 2n n≠ Johan Yao Krish Propo Hotel Nel Yana

( )1 2 15 10 21− =x x  

20, 10 0.059 0.066 0.068 0.048 0.049 0.073 0.013
50, 30 0.053 0.059 0.055 0.056 0.052 0.057 0.042

100, 60 0.061 0.061 0.062 0.061 0.056 0.063 0.051

Table 5, the type I error rate of all procedures considered are fluctuating, either inflated or deflated. At significant level 0.01, 
0.02, 0.05 their inflation in type I error rate, when sample sizes are (50,30) and (100,60), but at (20, 10) all most all the proce-
dures are deflated.

Table 6. Type I error rate

P=4  α=0.01

  ( )1 2.9 1.8 2.31 3.21=x      Johan Yao Krish Propo Hotel Nel Yana
20, 10 0.343 0.3589 0.3599 0.3508 0.1974 0.3737 0.078

( )2 1.89 0.8 0.3 0.2=x      
50, 30 0.86 0.8712 0.8711 0.875 0.7027 0.8734 0.6825

100, 60 0.9968 0.9971 0.9971 0.9973 0.9733 0.9972 0.9902

1

5 3 2 1
3 5 2 1
2 2 5 0.9
1 1 0.9 5

 
 
 
 =
 
 
 
 

S

 

 α=0.025
  Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.4656 0.48 0.4817 0.4721 0.297 0.4946 0.1604

50, 30 0.918 0.9249 0.9247 0.9271 0.799 0.926 0.8057

2

0.9 0.7 0.5       0.2
0.7 0.9 0.3   0.1
0.5 0.3 0.9 0.1

 
0.2 0.1 0.1 0.9

 
 
 
 =
 
 
 
 

S

 

100, 60 0.9991 0.9992 0.9992 0.9992 0.9888 0.9992 0.9971
 α=0.05

  Johan Yao Krish Propo Hotel Nel Yana

( )1 2 1.01 1 2.10 3.01− =x x  

20, 10 0.5662 0.5793 0.5804 0.5731 0.3905 0.5914 0.2585
50, 30 0.9507 0.9547 0.9547 0.9561 0.8649 0.9555 0.886

100, 60 0.9995 0.9996 0.9996 0.9996 0.9938 0.9996 0.9987

Table 6 shows when that sample size is (20,10) Nel and Van der Merwe performed better than other procedures, but when 
sample size increases to (50,30) proposed procedure is better. And there was a great competition among the procedures at 
(100,60).

Table 7. Power of the test.

P=4  α=0.01

  ( )1 2.9 1.8 2.31 3.21=x      Johan Yao Krish Propo Hotel Nel Yana
20, 10 0.008 0.013 0.011 0.011 0.002 0.013 0

( )2 1.89 0.8 0.3 0.2=x      
50, 30 0.011 0.012 0.012 0.012 0.001 0.012 0.002

100, 60 0.007 0.007 0.007 0.007 0 0.007 0.004
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1

5 3 2 1
3 5 2 1
2 2 5 0.9
1 1 0.9 5

 
 
 
 =
 
 
 
 

S

 α=0.025
  Johan Yao Krish Propo Hotel Nel Yana

20, 10 0.024 0.029 0.031 0.026 0.004 0.033 0

50, 30 0.02 0.026 0.026 0.026 0.003 0.026 0.006

 

2

0.9 0.7 0.5       0.2
0.7 0.9 0.3   0.1
0.5 0.3 0.9 0.1

 
0.2 0.1 0.1 0.9

 
 
 
 =
 
 
 
 

S

100, 60 0.021 0.022 0.022 0.022 0.002 0.022 0.01
 α=0.05

  Johan Yao Krish Propo Hotel Nel Yana

  ( )1 2 1.01 1 2.10 3.01− =x x
20, 10 0.05 0.055 0.055 0.051 0.009 0.06 0
50, 30 0.048 0.051 0.051 0.051 0.012 0.051 0.022

100, 60 0.052 0.053 0.052 0.053 0.008 0.053 0.034

Hotelling T [26] square and yanagihara [16] are below the nominal level in all the scenarios considered, while other procedures 
fluctuated (Inflated or deflated) round the nominal level as in Table 7.

DATA SET (FOR ILLUSTRATED EXAMPLE)
The data used here is an illustrated example used by Timm. The two sample sizes considered are ten and twenty respectively 

(n1=10 and n2=20) and two random variables (p=2) form each population. 

The sample means and their covariances are

1. 2.

45.0 40.0
   ,  

90.0 80.0
y y   

= =   
   

1 2

80.0 30.0 120.0 100.0
,   

 30.0  20.0 100.0 200.0
S S

−   
= =   −   

n1=10, n2=20

The difference between the means is

1. 2.

5.0
10.0

y y y  
= − =  

 

And the test statistic is

( ) ( )
1

2 1 2
1. 2. 1. 2.

1 2

' S ST y y y y
n n

−
 

= − + − 
 

( )
0.0731707 0.0121951 5.0

5.0,1 0.0 '
0.0121951 0.0853659 10.0

  
  
  

T2=11.58542
Table 8. The result from the illustrated example.

   α=0.05
  Johan Yao Krish Propo Hotel Nel Yana

Critical value 6.978 7.2012 7.223 7.7396 6.9567 6.9601 10.0088
Power 0.4979 0.5109 0.5121 0.868 0.5068 0.4969 0.6244

   α=0.025
Critical value 8.852 9.1661 9.1987 9.9867 8.7984 8.8036 13.8708

Power 0.62 0.6334 0.6347 0.9325 0.6273 0.618 0.7527
   α=0.01

Critical value 11.4986 11.9613 12.0129 13.2753 11.3828 11.3908 20.3456
Power 0.7503 0.7625 0.7638 0.9732 0.7551 0.7456 0.868
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From Table 8, the proposed procedure has the highest power followed by Yanagihara [16], Krishnamoorthy [14], Yao [10], Hotel-
ling T square [26], Johansen [11] and Nel and Van der Merwe [14] at all the significant level α considered (α=0.05, 0.025 and 0.01).

FINDINGS
From the simulation, it is obvious from Tables 1, 3 and 5 that when the sample size is very small (20,10) proposed procedure 

is not at his best, but when sample size increases to (50,30) and (100,60), the proposed procedure performed better than the all 
procedures considered. Nel and Van der Merwe [14] performed better when the sample size is very small (20,10) followed by Yao 
[10], Krishnamoorthy [14] and Proposed procedures in term of power of the test in all the scenarios considered. 

In term of Type I error rate, proposed procedure compete favorably well with the other procedures selected for this study. 
Yao [10], Krishnamoorthy [14], Johansen [11], Nel and Van der Merwe [14] and the proposed procedures are fluctuating (Inflated and 
Deflated) around the nominal level while Hotelling T [26] square and Yanagihara [16] are below the nominal level.
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