An Improved Method for Starting of Induction Motor with Reduced Transient Torque Pulsations

Nithin K S, Bos Mathew Jos, Muhammed Rafeek
M. Tech Student, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India
Associate Professor, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India
M. Tech Student, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam, Kerala, India

Abstract: Three phase induction motor produces severe starting torque pulsations. This causes shocks to the driven equipment and damage to the mechanical system components. In this method a novel method for starting of induction motor is proposed. The scheme depends on initial switching instances at which each phases of motor terminals are connected to the supply. A mathematical model for a three phase induction motor is developed in matlab/simulink and observed the effectiveness of the system in the elimination of torque pulsations. Hardware is implemented with an AC voltage controller using skt 24/12e thyristors. The gate control is provided with 89C51 microcontroller and the simulation results are verified through the hardware.

Keywords: Induction motor, motor starter, torque pulsations, modelling.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Moment of inertia in Kg-m2</td>
</tr>
<tr>
<td>i_{ds}, i_{qs}</td>
<td>2-phase stator currents in Ampere</td>
</tr>
<tr>
<td>i_{dr}, i_{qr}</td>
<td>Transformed two phase rotor currents in Ampere</td>
</tr>
<tr>
<td>r_s, L_s</td>
<td>2-phase stator resistance in ohms and inductance in Henry</td>
</tr>
<tr>
<td>r_r, L_r</td>
<td>2-phase stator resistance in ohms and inductance in Henry referred to stator in ohms</td>
</tr>
<tr>
<td>T_e</td>
<td>Electromagnetic Torque in N-m</td>
</tr>
<tr>
<td>T_L</td>
<td>Load Torque in N-m</td>
</tr>
<tr>
<td>V_{ds}, V_{qs}</td>
<td>2-phase stator voltage in Volts</td>
</tr>
<tr>
<td>L_m</td>
<td>Mutual inductance in Henry</td>
</tr>
<tr>
<td>w_r</td>
<td>Rotor speed in rad/sec</td>
</tr>
<tr>
<td>P_o</td>
<td>Number of poles</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

Induction motors have wide range of applications in many industrial as well as manufacturing processes. They are highly efficient motors when operated near to its rated torque and speed. Three phase induction motor produces severe starting torque pulsations [1] due to the interaction between slip frequency current and transient asymmetrical flux. These torque pulsations cause shocks to the driven equipment and damage to the mechanical system components such as gear, shafts, couplings etc. Also high inrush current is drawn by the motor which may reduce the efficiency and cause insulation failure. A perfect starter can avoid these problems and provide smooth running for the machine. The
starting methods of three phase induction motors are generally classified into four\cite{2}\cite{3}\cite{4}: Direct online starting (DOL), electromechanical reduced voltage starting, solid state reduced voltage starting and variable frequency drives (VFD). Among these DOL starting is the cheapest way but it may present difficulties for the motor itself and the loads supplied from the common coupling point due to the voltage dip in the power supply during starting. Electromechanical reduced voltage starters consist of star delta starting, rotor resistance starting, autotransformer starting etc. But all these conventional methods have their own draw backs such as non simultaneous switching of all the three phases to the supply, need for frequent inspection and maintenance, failure in the moving parts due to large number of switching etc. Soft starters or solid state reduced voltage starters are simple, reliable and economically viable and are increasingly used in industries. Variable frequency drives are more expensive due to its converter and inverter sections.

The mechanical subsystem determines the amount of torque pulsations in shaft at the starting instant. In this paper a new control strategy is proposed for eliminating the torque pulsations and provides a smooth acceleration for the motor. The method is based on the initial switching instants of each motor terminal given to the supply. A mathematical model is developed in matlab/simulink for a 415 V, 4.7 A, 1435 rpm and 50 Hz three phase induction motor. Hardware is implemented using a three phase voltage controller with a gate control circuit and the simulation results are verified.

II. MATHEMATICAL MODEL

The mathematical model is developed in terms of abc axes coordinates. Reference frames are just like an observer platforms where the unique equation of the system can be developed. The coefficients of the differential equations depend on the rotor angle and time. The time varying inductances are eliminated by performing suitable transformation from abc to d-q axes reference frame fixed to the stator\cite{5}\cite{6}. The dynamic equations for the induction motor are given below.

\[
\begin{bmatrix}
di_{ds} \\
di_{qs} \\
di_{dr} \\
di_{qr}
\end{bmatrix}
\frac{dt}{dt}
= \frac{1}{\sigma}
\begin{bmatrix}
-L_s r_s & -r_s L_m & r_s L_m & \omega_L L_m \\
\omega_L L_m & L_s r_s & -L_s r_s & L_s L_m \\
\omega_L L_m & L_s r_s & -L_s r_s & L_s L_m \\
L_s L_m & -L_s L_m & L_s L_m & L_s L_m
\end{bmatrix}
\begin{bmatrix}
i_{ds} \\
i_{qs} \\
i_{dr} \\
i_{qr}
\end{bmatrix}
+ \frac{1}{\sigma}
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
V_{ds} \\
V_{qs}
\end{bmatrix}
\]

Where $\sigma = 1-(L_m^2/L_s L_r)$. V_{ds} and V_{qs} are given by

\[
\begin{bmatrix}
V_{ds} \\
V_{qs}
\end{bmatrix}
= \sqrt{2/3}
\begin{bmatrix}
1 & -1/2 & -1/2 \\
0 & \sqrt{3}/2 & \sqrt{3}/2
\end{bmatrix}
\begin{bmatrix}
V_{is} \\
V_{qs}
\end{bmatrix}
\]

\[..............................(2)\]

and

\[
\begin{bmatrix}
V_r \\
V_s \\
V_b
\end{bmatrix}
= V_m
\begin{bmatrix}
\sin(\omega t) \\
\sin(\omega t - 2\pi/3) \\
\sin(\omega t + 2\pi/3)
\end{bmatrix}
\]

\[..............................(3)\]
The matrix equation (1) is derived by the proper transformations of the quantities for which the rotor reference frame is fixed to the stator. These differential equations are used to develop a suitable system matrix for the entire model. Equation (2) shows voltage equations in abc axes quantities and equation (3) shows the corresponding transformations to d-q axes quantities.

The electromagnetic torque is given by

\[Te = \frac{\sqrt{3}}{2} p_0 L_m (I_{d1} I_{q5} - I_{q1} I_{d5}) \]

... (4)

And the speed is given by

\[\frac{d\omega_r}{dt} = \frac{T_e - T_i}{J} \]

... (5)

Fig. 1 Schematic diagram for starter of induction motor

After adding the torque balance equation for dynamic operation, the model is brought into the state space form for simulation. Matlab function for measuring the torque, speed in radians and rpm is developed. Equation (4) and (5) shows the torque and speed equations respectively.

III. PROPOSED CONTROL SCHEME

In the proposed control technique the initial switching instants of motor terminals to the three phase supply is controlled. Fig.1 shows the schematic of the starting circuit for induction motor. In this three switches are connected to each phases of the supply. The switching instants determine the current variation and the transient torque pulsations at the starting of induction motor. Interaction between current and flux causes the starting torque pulsations. So by providing a gradual variation in flux the torque can be control within the acceptable limit. Initially the motor is started with only two phases of supply. So at starting the effective flux will be varying with the rotor angle. By proper switching of the third phase the flux jump is avoided and thus provides a smooth acceleration for the motor.

Extensive simulations were done with different combinations of initial switching instants. It is found that improved torque pulsations is obtained by giving Y and B phases at starting, i.e. t = 0 and R phase with a time delay of t1 seconds.
IV. SIMULATION RESULTS

The proposed scheme is implemented in the mathematical model developed. Three switching instances of power supply are given below and the three input voltages are shown in Fig. 2.

Switching instants
Y, B phases at t = 0
R phase at t₁ = 0.013333 sec

The simulation is started with a time delay of 2 sec for better understanding. So all the waveforms in the figures are started at 2 sec. Torque profile for normal starting scheme is shown in the Fig. 3 and that for the proposed scheme is shown in Fig. 4. It is observed that for small firing angles the starting torque pulsations are very much large while the settling time is small. But for increased firing angles the starting torque pulsations are less but the settling time is large. In the new scheme an improved torque profile is obtained as shown in Fig. 4. The positive as well as negative torque pulsations are almost eliminated and a waveform without many transients is obtained. Due to reduced voltage at the starting instant the current drawn is also much less compared to any other method. The transient time is very less and the steady state torque is obtained within 1.5 seconds.
V. EXPERIMENTAL SETUP

The experiment is carried out with an AC voltage controller developed with two anti parallel thyristors connected in each phase of the power supply as shown in Fig. 5. Thyristor is of type skt 24/12e with ratings 1200 V, 50 A. The switching instants are determined by the firing circuit. Firing circuit consists of zero crossing detectors, microcontroller and pulse transformers. The programming is done in 89C51 microcontroller and the program is tested with softwares like KEIL µvision 4 and proteus 7 professional. The proteus model and corresponding switching waveforms are shown in Fig. 6 and Fig. 7.
Fig. 6 Proteus model for generating switching pulses
According to the program the switching pulses for the R phase are generated after a delay of .013333 sec as shown in the Fig. 7. After testing, the hardware is implemented. The zero crossings of all the three phases are determined by the zero crossing detectors which use MCT 2E opto-coupler as shown in the Fig. 8 and are given to the microcontroller and the output is processed to a triggering circuit where the pulse transformer generates triggering signals (fig. 9). The triggering pulses generated for anti parallel thyristors connected in R phase is shown in Fig. 10(a). And that for Y and B phases are shown in Fig. 10(b).
VI. CONCLUSION

In this paper a new control strategy is presented to improve the electromagnetic torque pulsations at starting. The initial switching instants of the motor terminals to the supply are controlled. Only two phases are given at the starting instant and the third phase is given after a short time delay. Torque profile is seemed to be improved with minimized torque pulsations. AC voltage controller is developed. Gate drive circuit using 89C51 microcontroller is tested in Proteus 7 professional. Required switching sequence is obtained. This method efficiently minimized torque pulsations at starting, hence avoid shocks to the driven equipment and reduce damage in mechanical system components such as gears, couplings and shafts. So this technique can be implement in industries for large induction motors.
REFERENCES

BIOGRAPHY

Nithin K.S received the B.Tech degree in electrical and electronics engineering from Govt. Engineering College Idukki, Mahatma Gandhi University, Kottayam, Kerala, INDIA in 2011. He is currently an M.Tech scholar in Power Electronics at Mar Athanasius College of Engineering, Kothamangalam, Mahatma Gandhi University. His areas of interest include power electronic applications for electric motor drives.

Dr. Bos Mathew Jos received B.Tech Degree from Mahatma Gandhi University, Kottayam, Kerala, INDIA in 1993 and M.Tech and Ph. D Degrees from National Institute of Technology Tiruchirappalli, INDIA in 2004 and 2010 respectively. Since 1998, he has been with Mar Athanasius College of Engineering Kothamangalam, Kerala. Currently, he is an Associate Professor of Electrical and Electronics Engineering Department. His research interests are Power Electronics and Drives.

Muhammed Rafeek has received the B.Tech degree in electrical and electronics engineering from College of Engineering Munnar, Cochin University of Science and Technology, Kalamassery, Kochi, Kerala, INDIA in 2010. He is currently M.Tech scholar in Power Electronics at Mar Athanasius College of Engineering, Kothamangalam, Mahatma Gandhi University. His areas of interest include power electronic applications for electric motor drives.