Bio Fertilizers Equipment’s and its Types

Shabana Sultana*
Department of Biotechnology, Andhra University, Andhra Pradesh, India

Received: 25/09/2016
Revised: 01/10/2016
Accepted: 07/10/2016

*For Correspondence
Shabana Sultana, Department of Biotechnology, Andhra University, Andhra Pradesh, India, Tel: 9848033228.

E-mail: Shabanasultana2@gmail.com.

Keywords: Fertilizers, Soil, Equipment, Microbes, Plants

ABSTRACT

Biofertilizers are characterized as arrangements containing living cells or inert cells of productive strains of microorganisms that harvest plants uptake of supplements by their communications in the rhizosphere when connected through seed or soil. They quicken certain microbial procedures in the dirt which expand the degree of accessibility of supplements in a structure effortlessly absorbed by plants. Regularly microorganisms are not as effective in normal surroundings as one would anticipate that them will be and hence falsely increased societies of proficient chose microorganisms assume an indispensable part in quickening the microbial procedures in soil.

INTRODUCTION

Types of Bio Fertilizers

Rhizobium, Azospirillum, Cyanobacteria, Azolla, liquid biofertilizers, Azotobacter, Acetobaceter.

Rhizobium

Rhizobium is a dirt living space bacterium, which can ready to colonize the vegetable roots and fixes the environmental nitrogen advantageously. The morphology and physiology of Rhizobium will change from free-living condition to the bacteroid of knobs. They are the most productive biofertilizer according to the amount of nitrogen settled concerned [1-10]. They have seven genera and profoundly particular to shape knob in vegetables, alluded as cross immunization bunch.

Azospirillum
Azospirillum lipoferum and A. brasilense are essential tenants of soil, the rhizosphere and intercellular spaces of root cortex of graminaceous plants. They play out the cooperative harmonious connection with the graminaceous plants. The microbes of genus Azospirillum are N2 altering creatures disconnected from the root or more ground parts of an assortment of yield plants. They are Gram negative, Vibrio or Spirillum having bounteous amassing of polybetahydroxybutyrate in cytoplasm. Five types of Azospirillum have been portrayed to date A. brasilense, A. lipoferum, A. amazonense, A. halopraeferens and A. irakense. The life form multiplies under both anaerobic and oxygen consuming conditions yet it is especially small scale aerophilic in the nearness or nonappearance of joined nitrogen in the medium \[^{21-20}\].

Cyanobacteria

Both free-living and additionally cooperative cyanobacteria have been saddled in rice development in India. A composite society of BGA having heterocystous Nostoc, Anabaena, Aulosira and so forth is given as essential inoculum in plate, polythene lined pots and later mass duplicated in the field for application as soil based chips to the rice developing field at the rate of 10 kg/ha. The last item is not free from unessential contaminants and not regularly observed for checking the nearness of desired algal vegetation.

When such a great amount of announced as a biofertilizer for the rice crop, it has not in the blink of an eye pulled in the consideration of rice producers all over India aside from pockets in the Southern States, quite Tamil Nadu. The advantages because of algalization could be to the degree of 20 kg N/ha to 30 kg N/ha under perfect conditions yet the work arranged procedure for the planning of BGA biofertilizer is in itself a restriction.

Azolla

Azolla is a free-drifting water greenery that buoys in water and fixes barometrical nitrogen in relationship with nitrogen altering blue green alga Anabaena azollae. Azolla fronds comprise of sporophyte with a coasting rhizome and little covering bi-lobed leaves and roots. Rice developing ranges in South East Asia and other underdeveloped nations have as of late been displaying expanded enthusiasm for the utilization of the advantageous N2 settling water plant Azolla either as another nitrogen sources or as a supplement to business nitrogen manures. Azolla is utilized as biofertilizer for wetland rice and it is known not 40 kg N/ha to 60 kg N/ha per rice crop.

Liquid Biofertilizers

Biofertilizers are such as Rhizobium, Azospirillum and Phosphobacteria provide nitrogen and phosphorous nutrients to crop plants through nitrogen fixation and phosphorous solubilization processes. These Biofertilizers could be effectively utilized for rice, pulses, millets, cotton, sugarcane, vegetable and other horticulture crops \[^{21-30}\]. Biofertilizers is one of the prime input in organic farming not only enhances the crop growth and yield but also improves the soil health and sustain soil fertility.

Azotobacter

It is the imperative and surely understood free living nitrogen settling high-impact bacterium. It is utilized as a bio-Fertilizer for all non-leguminous plants particularly rice, cotton, vegetables and so on. Azotobacter cells are not present on the rhizosplane but rather are copious in the rhizosphere district \[^{31-40}\]. The absence of natural matter in the dirt is a constraining element for the multiplication of Azotobaceter in the dirt.

Field analyses were directed in 1992, 1993 and 1994 amid the pre-kharif wet seasons to discover the impact on rice grain yield by the consolidated utilization of N-settling living beings and inorganic nitrogen manure which recorded increment in was yield.

Acetobaceter
This is a sacharophillic microbes and partner with sugarcane, sweet potato and sweet sorghum plants and fixes 30 kgs/N/ha year. Basically this bacterium is marketed for sugarcane crop. It is known not yield by 10 t/section to 20 t/section of land and sugar content by around 10% to 15%.

Bio Fertilizer Equipments

In biofertilizer creation industry, types of gear are the significant foundation, which includes 70% of capital speculation. Any bargain on the use of the accompanying said types of gear may at long last decrease in the nature of biofertilizer. After examining the standard behind the use of all instruments, a portion of the instruments can be supplanted with a society room fitted with a U.V. lamp. Autoclaves, hot air oven, incubators and fixing machines are indigenously made with appropriate specialized particulars \(^{[41-50]}\). The right utilization of types of gear will give continuous presentation with quality inoculum. Some of the biofertilizer equipments are as follows.

Autoclave

It is a contraption in which materials are cleaned via air free immersed steam at a temperature above 100°C. On the off chance that the steam weight inside the autoclave is expanded to 15 psi, the temperature will ascend to 121°C. this is adequate to decimate every single vegetative cell. Regularly all development medium is sanitized in the autoclave\(^{[51-60]}\).

Laminar Air Flow Chamber

Laminar wind stream chamber gives a uniform stream of sifted air. This nonstop stream of air will counteract settling of particles in the work area. Air borne tainting is evaded in this chamber. Society exchanges and vaccination should be possible here.

BOD Incubators

Hatcheries giving controlled conditions required for the development and improvement of microorganisms. Duplication of starter society should be possible in this instrument \(^{[61-70]}\).

Rotary Shaker

It is utilized for disturbing society jars by roundabout movement under variable pace control. Shaking gives air circulation to development of societies. Shakers holding upto 20 to 50 cups are by and large utilized. The limit of the shaker might be expanded in the event that it is a twofold decker sort \(^{[71-80]}\).

Refrigerator

This gear is utilized protecting all mother societies utilized for biofertilizer creation. The mother society is intermittently sub-refined and put away in the cooler for long haul use \(^{[81-90]}\).

Fermentor

A fermentor is the gear, which gives the best possible environment to the development of a craved life form. It is for the most part an extensive vessel in which, the life form might be kept at the required temperature, pH, broke up oxygen fixation and substrate focus. Distinctive models of fermentors are accessible relying on the need \(^{[91-100]}\). A straightforward adaptation model contains steam generator, disinfection process gadgets and instigator.

REFERENCES

47. Owhonka A and Gideon OA. The role of aerobic microorganisms in the biodegradation of petroleum hydrocarbons laboratory contaminated groundwater. Fermentol Techno. 2015;4:122.

76. Park KS and Kloepper JW. Activation of PR-1a promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringaepv. tabaci. Biol Control. 2000;18:2-9

