
Volume 2, No. 8, August 2011

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 34

COLORIZATION OF GRAYSCALE IMAGES: AN OVERVIEW

Ambika Kalia
1
, Balwinder Singh

2

1Asst. Professor (Computer Engg), Bhai Gurdas Institute of Engg and Technology, Sangrur.
1ambika282004@yahoo.com

2Asst. Professor (Computer Engg.), Yadavindra college of engineering, Guru Kashi Campus,Talwandi Sabo.

Abstract: An efficient colorization scheme for images based on prioritized source propagation is proposed in this work. A user first scribbles colors on a set of

source pixels in an image. The proposed algorithm then propagates those colors to the other non-source pixels and the subsequent frames. Specifically, the

proposed algorithm identifies the non-source pixel with the highest priority, which can be most reliably colorized. Then, its color is interpolated from the

neighboring pixels. This is repeated until the whole image or movie is colorized. Simulation results demonstrate that the proposed algorithm yields more reliable

colorization performance than the conventional algorithms.

Keywords— Image colorization, priority, source pixels and propagation

INTRODUCTION

Colorization is the process of adding colors, which play an

important role in the human perception of visual

information, to monochrome images or videos [1].
Colorization, the task of coloring a grayscale image or

video, involves assigning from the single dimension of

intensity or luminance a quantity that varies in three

dimensions, such as red, green, and blue channels. Mapping

between intensity and color is, therefore, not unique, and

colorization is ambiguous in nature and requires some

amount of human interaction or external information.

The rapid progress in computer technology for multimedia

system has led to a rapid increase in the use of digital

images. Rich information is hidden in this data collection
that is potentially useful in a wide range of applications like

Crime Prevention, Military, Home Entertainment,

Education, Cultural Heritage, Geographical Information

System (GIS), remote sensing, Medical diagnosis, and

World Wide Web [9, 10]. Rich information is hidden in

these data collection that is potentially useful. A major

challenge with these fields is how to make use of this useful

information effectively and efficiently. Exploring and

analyzing the vast volume of image data is becoming

increasingly difficult. Since the human visual system can

perceive color information more efficiently than

monochrome information, the value of monochrome images,
films and TV programs can be increased through the

colorization process. However, manual colorization

consumes a lot of time and labor.Based on the concepts of

luminance-weighted chrominance blending and fast intrinsic

distance computations, high-quality colorization results for

still images and video are obtained at a fraction of the

complexity and computational cost of previously reported

techniques.

Possible extensions of the algorithm introduced here

included the capability of changing the colors of an existing
color image or video, as well as changing the underlying

luminance. Adding color to a grayscale image is a neat little

effect you see all over the place. Now, this isn’t to be
confused with taking a color image and removing its color,

only to add some of it back in certain places. This technique

is entirely different. It’s a really simple technique that’s fun

to use; it’s great for creating visual interest, and drawing

attention to a certain portion of a photo.. Reinhard et al. [2]

introduced an early colorization scheme, which transfers

colors from a color source image to a gray target image by

matching the luminance components of the two images.

Welsh et al. [3] improved the matching performance by
exploiting the luminance values and textures of neighboring

pixels. These color transferring schemes provide acceptable

colorization performance, provided that an input image has

distinct luminance values or textures across object

boundaries. An alternative approach is to demand a user to

assign colors to some pixels and propagate those colors to

the other remaining pixels. Levin et al. [4] formulated the

propagation problem as the minimization of a quadratic cost

function, assuming that neighboring pixels with similar

intensities should have similar colors. Yatziv and Sapiro [5]

blended the colors of source pixels to paint a target pixel

based on the geodesic distances from the source pixels to the
target pixel. A geodesic distance measures the variation of

luminances along the path from a source pixel to a target

pixel. However, the propagation-based schemes may yield

color blurring errors, and their performances are affected

significantly by the locations of color sources.

In graph theory, graph coloring is a special case of graph

labeling; it is an assignment of labels traditionally called

"colors" to elements of a graph subject to certain constraints.

In its simplest form, it is a way of coloring the vertices of a

graph such that no two adjacent vertices share the same
color; this is called a vertex coloring. Similarly, an edge

coloring assigns a color to each edge so that no two adjacent

edges share the same color, and a face coloring of a planar

graph assigns a color to each face or region so that no two

faces that share a boundary have the same color.

Vertex coloring is the starting point of the subject, and other

coloring problems can be transformed into a vertex version.

For example, an edge coloring of a graph is just a vertex

Ambika Kalia et al, Journal of Global Research in Computer Science, 2 (8), August 2011, 34-37

© JGRCS 2010, All Rights Reserved 35

coloring of its line graph, and a face coloring of a planar

graph is just a vertex coloring of its planar dual. However,

non-vertex coloring problems are often stated and studied as

is. That is partly for perspective, and partly because some

problems are best studied in non-vertex form, as for instance

is edge coloring.

Colors make images more vivid. They can now be recorded

with a point-and-shoot camera easily. However, people

often want to add colors to old monochrome photos, and

pictures are sometimes shot with severely wrong white

balance settings, in such a case, a possible remedy is to keep

only the captured intensities and transfer colors from

another source to it. The technique of adding colors is

particularly useful when the image is taken with special

sensors, such as X-ray, MRI, near infrared and so on. This is

called “pseudo-coloring” . The difficulty of assigning colors

to a monochrome image rises from the lack of deterministic
relations between the luminance and the hue/saturation

channel of an image – in an image, pixels of the same

intensity may have different colors and vice versa. A human

may intuitively guess the colors given a monochrome

picture, because we know what are in the picture and we

have prior knowledge on how their colors should be.

However, assigning colors to each piece in an image is very

tedious.

The characteristics generally used to distinguish one color

from another are brightness, hue and saturation. Brightness
refers to intensity. Hue is an attribute associated with the

dominant wavelength in a mixture of light waves. Saturation

refers to relative purity or the amount of white light mixed

with a hue. The Hue and saturation taken together are called

chromaticity, and therefore a color may be characterized by

its brightness and chromaticity. The amounts of RGB

needed to form any given color are called the tri-stimulus

value. The chromaticity is useful for color mixing because a

straight line segment joining any two points, and define all

the different color variations that can be obtained by

combining these two colors additively. Color can be added

to gray-scale images in order to increase the visual appeal of
images such as black and white photos, classic movies and

scientific illustrations.

METHOD

Graph Coloring Algorithm:

The traditional optimistic graph coloring algorithm[6, 7, 8]

consists of five main phases Build An interference graph is

constructed using the results of data flow analysis. A node in

the graph represents a variable. An edge connects two nodes

if the variables represented by the nodes interfere and cannot

be allocated to the same register. Restrictions on what

registers a variable may be allocated to can be implemented

by adding precolored nodes to the graph.

Simplify A heuristic is used to help color the graph. Any

node with degree less than k, where k is the number of
available registers, is removed from the graph and placed on

a stack. This is repeated until all nodes are removed, in

which case we skip to the Select phase, or no nodes can be

simplified.

Potential Spill If only nodes with degree greater than k are

left, we mark a node as a potential spill node, remove it

from the graph, and optimistically push it onto the stack. We

repeat this process until there exist nodes in the graph with

degree less than k, at which point we return to the Simplify

phase.

Select In this phase all of the nodes have been removed

from the graph. We now pop the nodes off the stack. If the

node was not marked as a potential spill node then there

must be a color we can assign this node that does not

conflict with any colors already assigned to this node’s

neighbors. If it is a potential spill node, then it still may be

possible to assign it a color; if it is not possible to color the

potential spill node, we mark it as an actual spill and leave it

uncolored.

Actual Spill If any nodes are marked as actual spills, we
generate spill code which loads and stores the variable

represented by the node into new, short lived, temporary

variables everywhere the variable is used and defined.

Because new variables are created, it is necessary to rebuild

the interference graph.

Note that the Simplify, Potential Spill, and Select phases

together form a heuristic for graph coloring. If this heuristic

is successful, there will be no actual spills. Otherwise, the

graph is modified so that it is easier to color by spilling

variables and the entire process is repeated.

The Graph Partitioning Problem (GPP):

Let G = (V, E) be any graph with an even number (2N) of

vertices, V. The GPP involves partitioning V into two node

sets V1 and V2 (i.e., |V| = |V1| + |V2| and V1 ∩ V2 = Φ) such

that the sum of the edge-cost having end-points in different

sets is minimized. Indeed, if cij is the symmetric cost of the

edge connecting nodes i and j, the GPP is the following

nonlinear optimization problem :

where xi Є {0, 1} for all i Є V ; and xi = 1 => i is in set V1 ;

xi = 0 => i is in set V2. (3)

The formulation of the GPP can be alternatively rewritten in

an unconstrained form as:

where ∏ is a penalty measure associated with (2). The latter

formulation was explicitly utilized by Johnson et. al. in [9]

and later in the genetic algorithm proposed by [10, 11]. In

the absence of a systematic algorithm for tackling the

problem the most obvious strategy is to resort to a brute

force exhaustive search of the solution space. In this case,

the solution space is prohibitively large for any meaningful

problem; furthermore, this space grows exponentially with
the number of nodes. Indeed, when |V| = 10, the solution

space is of cardinality 126. When |V| = 100 the space has

more than 1029 feasible solutions . Rather than attempt to

obtain the optimal solution, most "approximation

Ambika Kalia et al, Journal of Global Research in Computer Science, 2 (8), August 2011, 34-37

© JGRCS 2010, All Rights Reserved 36

algorithms" try to produce near-optimal solutions. Indeed, a

whole body of literature has gone into designing heuristic

strategies that yield solutions that are "arbitrarily close" to

the optimal one, and which are computable in a "reasonable"

amount of time.

Given the luminance information of an image or video

signal, the proposed algorithm attempts to generate color

information, which looks natural and realistic. We work in

the YUV space, where Y is the luminance channel, and U and

V are the chrominance channels. Let Y (p) denote the

luminance of pixel p, and C(p) = (U(p), V (p)) denote the

chrominance vector of p.

Image Colorization:

Given a luminance image, a user puts color values onto a

selected set of pixels with a few brush strokes. Then, the

proposed algorithm propagates those color values to

neighboring pixels to construct a color image. The color
accuracy a(p) of pixel p is defined as a number between 0

and 1, which indicates the reliability of the color C(p). For

example, a(p) = 1 when pixel p has the most accurate color

C(p), whereas a(p) = 0 means that C(p) is not reliable at all

and thus should be updated using the color information of

neighboring pixels. Initially, a(p) is set to 1 if p is assigned

a color vector by the user, or set to 0 otherwise.We call p a

source pixel if a(p) = 1. The color information of source

pixels is propagated to non-source pixels.To this end, the

priorities of non-source pixels are defined, and non-source

pixels are colorized in the decreasing order of their
priorities. Specifically, the priority π(p) of a non-source

pixel p is defined as

where Np denotes the 4-neighbor set of p. In other words, if

p = (x, y),Np = {(x−1, y), (x+1, y), (x, y−1), (x, y+1)}.

Notice that p is assigned a higher priority π(p), if a

neighboring pixel q has a high accuracy a(q) and the

luminances Y (p) and Y (q) are similar to each other. In other

words, if a source pixel has a neighbor and they have similar

luminances,the neighbor is assigned a high priority.

(a) (b)

(c) (d)

Fig. 1. Colorization of the “Ocean” image: (a) the input

image with color sources, (b) the Levin et al.’s algorithm,

(c)the Yatziv and Sapiro’s algorithm, and (d) the proposed

algorithm.

After assigning and sorting the priorities, we update the

color vector C(p) of the non-source pixel p with the highest

priority by

where the weight wp,q is defined as

In Eq. (2), C(p) is set as the weighted sum of neighboring

colors, since the accuracy a(p) of the non-source pixel p is

0.In the weighted summation, C(q) is given a high weight

wp,q

if q has a high accuracy and p and q have similar

luminances.After coloring pixel p, its accuracy a(p) is

updated to 1,i.e., p becomes a source pixel. The priorities of

the neighboring pixels in Np are also updated by Eq. (1).

Then, the priorities of all non-source pixels are sorted, and

the non-source pixel with the highest priority is colorized by

Eq. (2). This is repeated until all pixels are colorized.In the

image colorization, the accuracy a(p) is binary: it is 1 if p is

a source pixel, and 0 otherwise.

CONCLUSIONS

In this paper we have studied a new, general, fast, and user

friendly approach to the problem of colorizing grayscale

images. A simple but efficient colorization scheme for

images and videos, which propagates the colors of source
pixels to non-source pixels in a prioritized manner, was

proposed in this work. The proposed algorithm derives the

color accuracies and the colorization priorities, and colorizes

the non-source pixels in the decreasing order of their

priorities.

REFERENCES

[1]. G. Burns, “Colorization,” Museum of broadcast

communications:The Encyclopedia of Television,

http://www.museum.tv/archives/etv/index.html

[2]. E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley,

“Color transfer between images,” IEEE Computer Graphics

and Applications, vol. 21, no. 5, pp. 34–41, 2001.

[3]. T. Welsh, M. Ashikhmin, and K. Mueller, “Transferring

color to grayscale images,” in Proc. ACM SIGGRAPH

Conf., 2002,pp. 277–280.

[4]. A. Levin, D. Lischinski, and Y.Weiss, “Colorization using

optimization,” in Proc. ACM SIGGRAPH Conf., 2004, pp.

689–694.

[5]. L. Yatziv and G. Sapiro, “Fast image and video

colorization using chrominance blending,” IEEE Trans.

Image Processing,vol. 15, no. 5, pp. 1120–1129, 2006.

[6]. Preston Briggs. Register allocation via graph coloring. PhD

thesis, Rice University, Houston, TX, USA, 1992.

[7]. Preston Briggs, Keith D. Cooper, and Linda Torczon.

Improvements to graph coloring register allocation. ACM

Trans. Program. Lang. Syst., 16(3):428–455, 1994.

http://www.museum.tv/archives/etv/index.html

Ambika Kalia et al, Journal of Global Research in Computer Science, 2 (8), August 2011, 34-37

© JGRCS 2010, All Rights Reserved 37

[8]. G. J. Chaitin. Register allocation & spilling via graph

coloring. In Proceedings of the 1982 SIGPLAN symposium

on Compiler construction, pages 98–101. ACM Press,

1982.

[9]. Johnson, D. S., Aragon, C.R., McGeoch, L.A. and

Schevon, C., "Optimization by Simulated Annealing: An

Experimental Evaluation; Part 1, Graph Partitioning",

Operations Research, 37, 6, 1989.

[10]. Rolland, E., Abstract Heuristic Search methods for Graph

Partitioning, Ph.D. dissertation, The Ohio State University,

Columbus, Ohio. 1991.

[11]. Rolland, E. and Pirkul, H., "Heuristic Solution Procedures

for the Graph Partitioning Problem", Proc. of the 1992

ORSA-CSTS Conf. on Computer Science and Operations

Research : New Developments in Their Interfaces,

Williamsburg, 1992, pp. 475-490.

