DESIGN OF INTERPOLATION FILTER FOR WIDEBAND COMMUNICATION SYSTEM

Jaspreet Kaur¹, Gaurav Mittal²
Student, Bhai Gurudas College of Engineering and Technology, Sangrur, India¹
Assistant Professor, Bhai Gurudas College of Engineering and Technology, Sangrur, India²

Abstract: Interpolation filters are integral part of a modern communication transmitter. This paper presents the design and FPGA implementation for a digital up converter or interpolation filter for a WiMAX Communication system. Multistage implementation approach has been used to reduce the hardware requirement. The results have been presented for a xc3sd1800a-4fg676 FPGA device.

Keywords: Digital Up Converter, FPGA, Interpolation, Multistage, WiMAX.

I. INTRODUCTION

Modern signal processing problems are often solved in the digital domain due to the availability of powerful VLSI circuits which allow to perform complex operations in real-time, without the well-known shortcomings of analog implementations. The source signal is transformed into the digital domain by an A/D converter. All data processing, e.g. filtering, shaping, mixing etc., is done in the digital domain and only the final result is converted back to analog. To overcome the degradation caused by successive A/D-D/A conversion, all processing blocks must have digital interfaces. Depending on the available bandwidth of the channel, the required quality, and the data rate of the interfaces a wide variety of sample rates are used. The incorporation of all these systems is however trouble-free, if a sample-rate converter is used at each interface. Sample-rate conversion is used in the field of communications systems, speech processing systems, antenna systems and radar systems etc.

Many types of sampling have been discussed in the literature including non-uniform sampling, uniform sampling, and multiple function uniform sampling. The most common form of sampling is periodic sampling in which

\[ q(t) = t/T = n \]  

(1)

i.e., the samples \( x_d(n) \) are uniformly spaced in the dimension \( t \), occurring \( nT \) apart. For uniform sampling we define the sampling period as \( T \) and the sampling rate as...
It is necessary that the sampling rate $F$ be chosen to satisfy the requirements of the Nyquist sampling theorem. The sampling rate $F$ is a fundamental consideration in many signal processing techniques and applications. It often determines the convenience, efficiency, and accuracy in which the signal processing can be performed. The process of digitally converting the sampling rate of a signal from a given rate $F = \frac{1}{T}$ to a different rate $F' = \frac{1}{T'}$ is called sampling rate conversion. When the new sampling rate is higher than the original sampling rate, the process is called interpolation, whereas the process of digitally converting the sampling rate of a signal from a given rate to a lower rate is called decimation. Fig. 1 provides a general description of a sampling rate conversion system.

![Fig. 1 Basic process of digital sampling rate conversion.](image)

The ratio of sampling periods of $y(m)$ and $x(n)$ can be expressed as a rational fraction,

$$\frac{T'}{T} = \frac{F}{F'} = \frac{M}{L}$$

where $M$ and $L$ are integers.

For linear time-varying systems, each output sample $y(m)$ can be expressed as a linear combination of input samples $x(n)$. Mathematically $y(m)$ can be expressed as

$$y(m) = \sum_{n=-\infty}^{\infty} g_m(n)x([nm/L] - n)$$

In the trivial case when $T' = T$, or $L = M = 1$, equation (4) reduces to the simple time-invariant digital convolution equation

$$y(m) = \sum_{n=-\infty}^{\infty} g(n)x(m - n)$$
II. SAMPLING RATE UP CONVERSION

If the sampling rate is increased by an integer factor $L$, then the new sampling period $T'$ is

$$\frac{T'}{T} = \frac{1}{L}$$

(6)

and the new sampling rate $F' = LF$. This process of increasing the sampling rate of a signal $x(n)$ by $L$ implies that we must interpolate $L-1$ new sample values between each pair of sample values of $x(n)$.

$$x(n) \rightarrow \uparrow L \rightarrow w(m) \rightarrow h(m) \rightarrow y(m)$$

Fig. 2 Block diagram of Interpolator

Fig. 2 shows the conceptual block diagram of interpolator. For interpolation by factor $L$, $L-1$ zero values have to be inserted between each pair of samples of $x(n)$, resulting in the signal, $w(m)$ given as

$$w(m) = \begin{cases} x(m/L), & m = 0, \pm L, \pm 2L, \ldots \text{otherwise} \\ 0, & \text{otherwise} \end{cases}$$

(7)

To recover the baseband signal of interest and eliminate the unwanted higher frequency components it is necessary to filter the signal $w(m)$ with a digital low-pass filter, which approximates the ideal characteristic

$$H(e^{j\omega}) = \begin{cases} G, & |\omega| \leq \frac{2\pi FT'}{2} = \pi / L \\ 0, & \text{otherwise} \end{cases}$$

(8)

If $H(e^{j\omega})$ denote the frequency response of an actual filter that approximates the characteristic in (8), then

$$Y(e^{j\omega}) = H(e^{j\omega}) X(e^{j\omega L})$$

(9)

and from (8), using the approximated value of $H(e^{j\omega})$, (20) can be written as
\[ Y(e^{j\omega}) = \begin{cases} 
GX(e^{j\omega}), & |\omega| \leq \frac{\pi}{L} \\
0, & \text{otherwise} 
\end{cases} \quad (10) \]

III. DESIGN OF INTERPOLATION FILTER

Figure 3 show the complete setup developed using system generator and Figure 6 shows the details of DUC module. Figure 4 shows the internal view of multistage implementation of interpolation filter. The setup shown in Figure 3 has been simulated and synthesized using ISE 9.2i software. Table 1 shows the resources used by the design for xc3sd1800a-4fg676 FPGA device.
Table 1. Resource Utilization

From Table 1, it has been concluded that the proposed design uses only very small number of FPGA resources.

IV. CONCLUSION

DUC is in integral part of a digital communication receiver and its multistage design leads to the requirement of less number of FPGA resources. This paper shows the successful implementation of DUC for a WiMAX system. The resources utilized by the proposed design are well below the hardware utilization reported in previous works.

REFERENCES

2. Wenmiao Song & Bo Liu, "Design of the CIC decimation filter Based on SOPC Builder", 978-1-4244-5540-9/10/2010 IEEE.