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INTRODUCTION
Integral equations occur naturally in many fields of science and engineering [1]. A computational approach to solve integral 

equation is an essential work in scientific research. Fredholm and Volterra integral equation is one of the most important integral 
equations.

 Some iterative methods like Homotopy perturbation method (HPM) [2-11] and Adomian decomposition method (ADM) [12-14], 
Homotopy analysis method [15-22] have been applied to solve linear and nonlinear Fredholm and Volterra integral equations and 
integro-differential equations.

HPM has been used for a wide range of problems; for finding the exact and approximate solutions of nonlinear ordinary 
differential equations(ODEs) [7], linear and nonlinear integral equations [8], the integro-differential equations [9,10] and the Volterra-
Fredholm integral equations [11]. Hetmaniok et al. [23] have proposed method which is based on the homotopy perturbation method 
to solve Volterra–Fredholm integral equations of the second kind. The problem of the convergence of the series constructed is 
formulated and a proof of the formulation is given. Additionally, the estimation of the approximate solution is elaborated by taking 
the partial sums of the series. In 2016, Zulkarnain et al. [24] consider Fredholm-Volterro integro-differential equation (FVIDE) of 
order   of the third kind and solved it by using modified homotopy perturbation method (HPM). It is found that MHPM is a semi-
analytical method and easy to apply for FVIDE. Numerical examples are given to present the efficiency and reliability of the 
method.In this note, we consider two types of integral equations: 

1 1 2 2( ) ( ) = ( ) ( , ) ( )d ( , ) ( )d , [ , ],+ + ∈∫ ∫
b x

a a
s x u x f x K x t u t t K x t u t t x a bλ λ                  (1)
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1 1 2 2( ) ( ) = ( ) ( , ) ( )d ( , ) ( )d , [ , ].′ + + ∈∫ ∫
b x

a a
s x u x f x K x t u t t K x t u t t x a bλ λ                   (2)

Eqs. (1)-(2) are called Fredholm-Volterra integral equations (FVIEs) and Fredholm-Volterra integro-differential equations 
(FVIDEs) of the third kind respectively. For both type of equations the convergence of approximate solutions are established and 
four examples are provided to verify the accuracy of the proposed method.

The paper is organized as follows. In Section 2, we present the application of the HPM for the problem (1) and proof of the 
convergence. In Section 3, HPM is modified to solve the Eq. (2) and present the rate of convergence of the approximate solution. 
Section 4 provides four examples: first two examples related to the Eq. (1) and another two more examples dealt with Eq. (2). 
Numerical results show that the proposed methods are very accurate and converge fast. Conclusion is given in Section 5.

DERIVATION AND ESTIMATION OF THE APPROXIMATE METHOD FOR SOLVING FVIES 
OF THE THIRD KIND

To explain the homotopy perturbation method (HPM), we consider the general integral equation of the form 

=+Lu Nu f                       (3)

 where L  ia a linear operator and N  is nonlinear operator.

 As a possible remedy, we can define homotopy ( , )H v p  by 

( , ) = (1 ) ( ) ( ( ) ( ) )− + + −H v p p F v p L v N v f                      (4)

where ( )F v  is a functional operator with known solution 0u , which can be obtained easily. It is clear that, for 

( , ) = 0H v p                       (5)

from which we have 

( ,0) = ( ). ( ,1) = + −H v F v H v Lv Nv f                      (6)

This shows that ( , )H u p  continuously traces an implicitly defined curve from a starting point 0( ,0)H v  to a solution ( ,1)H u . 
The embedding parameter p  monotonically increases from zero to unit as the trivial problem ( ) = 0F v  is continuously deformed 
to the original problem ( ) ( ) = 0+ −L u N u f . The embedding parameter (0,1]∈p  can be considered as an expanding parameter [2].

To obtain the approximate solution of Eq.(3) we search solution in the series form 

=0
( ) = ( ) .

∞

∑ k
k

k
v x v x p                        (7)

When 1→p , Eq.(5) corresponds to Eq. (3) and becomes the approximate solution i.e., 

0 1
1

( ) = ( ) = ...lim
→

+ +
p

u x v x v v                                        (8)

The series (8) is convergent for most cases, and the rate of convergence depends on ( )L u  and ( )N u .

Let us consider the linear Fredholm-Volterra integral equation (1) where the kernels 1 2, ([ , ] [ , ])∈ ×K K C a b a b  and the 
functions , [ , ]∈s f C a b  are known, whereas the function u  is to be determined. Define the operators ( )L u  and ( )N u  for Eq. (1) 
as follows 

( ) = ( ) ( )Lv x s x v x

1 1 2 2( ) = ( , ) ( )d ( , ) ( ) , [ , ]− − ∈∫ ∫
b x

a a
Nv x K x t v t t K x t v t d t v C a bλ λ

with the assumption that ( ) 0≠s x  for any [ , ]∈x a b . Rewriting Eq. (4) in the form 

0 0( , ) = ( )− + + −H v p Lv u p u Nv f                      (9)

we solve the problem (1) as follows. For = 0p  the solution of the operator equation ( ,0) = 0H v  is equivalent to the solution 
of a trivial problem 0( ) ( ) ( ) = 0−s x v x u x . For = 1p  the equation ( ,1) = 0H v  leads to the solution of Eq. (1).

By substituting the series solution (7) into the Eq. (5) and according to Abel’’s Theorem the solution of Eq. (1) is obtained 
from the equation 

1
0 0

=0 =0
= ( )

∞ ∞
+   

− − −   
   
∑ ∑j j

j j
j j

L p v u p u f N p v                   (10)

Comparing the same power of parameter p  in both sides of Eq. (10), leads to the following relations 

0
0 =

u
v

s
                        (11)
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1 0 0
1= ( )− −v f u Nv
s

                    (12)

1
1= = 2,3,−− j jv Nv j
s

                      (13)

According to the scheme (11)-(13) we define partial sum as follow 
0

0
=0

( )
( ) = , ( ) = ( )

( ) ∑
n

n i
i

u x
s x s x v x

s x
                     (14)

Theorem 1 thm1 Let 1 2, ([ , ] [ , ])∈ ×K K C a b a b  and , [ , ]∈s f C a b  where ( ) 0≠s x  for any [ , ]∈x a b , be continuous functions. 
In addition, if the following inequality 

1 1 2 2= ( )(| | | | ) < 1− +c b a K Kα λ λ   

                 (15)

where 1=c
s

 is satisfied and initial guess 0u  is chosen as a function continuous on the interval [ , ]a b , then series solution 

(7) is uniformly convergent to the exact solution u  on the interval [ , ]a b  for each = [0,1]p . 

Proof. Prove of the Theorem 1 has not much changes of the Hetmaniok et al [23]. [Theorem 1]. 

Remark 1 Hetmaniok et al. [23] [Remark 1]. In the thm1, the interval [ , ]a b  can be replaced by ( , ), ( , ]a b a b  or [ , )a b , whereas 
the condition of continuity of iK  for = {1,2}i  and f  in the appropriate regions 1Ω  and 2Ω  must be strengthened by adding the 
assumption of boundedness of these functions. Moreover, the conditions ([ , ] [ , ])∈ ×iK C a b a b  can be replaced by some weaker 
condition, for example by the Lebesque integrability of kernel iK  on the set [ , ] [ , ]×a b a b  and by the inequality [25] 

| ( , ) | ( )≤ −∫
b

i ia
K x t dt M b a

In the case of difficulties or impossibility of finding the sum of series (7) for = 1p , we may consider an approximate solution 
by taking the partial sum of the series (14). The first 1+n  terms of series (14) in the limit 1→p  create the so-called n th-order 
approximate solution in the form 

=0
( ) = ( )∑

n

n k
k

s x v x                       (16)

The solution ( )ns x  in (16) can be estimated on the basis of the following theorem. Theorem 2 is not much difference given 
in Hetmaniok et al. [23] [Theorem 2]

Theorem 2 The error of n th-order approximate solution of (16) can be estimated by the inequality 

1
≤

−

n

nE B α
α

where :=|| ( ) ( ) ||−n nE v x s x , while 1|| ||≤v B  and | |< 1α . 

Proof. 

=0 =0
| ( ) ( ) |= ( ) ( )

∞

− −∑ ∑
n

n j j
j j

v x s x v x v x

= 1 = 1 = 1
= ( ) ( )

∞ ∞ ∞

+ + +

≤ ≤∑ ∑ ∑j j j
j n j n j n

v x v x v

1

= 1
=

1

∞
−

+

≤
−∑

n
j

j n
B B αα

α

DERIVATION AND ESTIMATION OF THE APPROXIMATE METHOD FOR SOLVING FVIDE 
OF THE THIRD KIND 

 Let us introduce the space of continuously differentiable functions 1([ , ])C a b  equipped with the norm 

1|| || = | ( ) | | ( ) |max max
≤ ≤ ≤ ≤

′+
a x b a x b

u u x u x                      (17)

i.e. 

1|| || =|| || || ||′+u u u

where || ||⋅  is the standard norm in [ , ]C a b .

To apply convex HPM for FVIDEs (2) we rewrite it in the form 

( )1 1 2 2 0
1( ) = ( ) ( , ) ( )d ( , ) ( )d , ( ) =
( )

′ + +∫ ∫
b x

a a
u x f x K x t u t t K x t u t t u a d

s x
λ λ              (18)
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where ( )′u x  is the first order derivative of ( )u x  with initial condition 0( ) =u a d  and integrate both sides of Eq. (??) to yield 

0 1 1 2 2
1( ) = ( ( ) ( , ) ( )d ( , ) ( )d )d
( )

+ + +∫ ∫ ∫
x b t

a a a
u x d f t K t u K t u t

s t
λ τ τ τ λ τ τ τ                  (19)

Write Eq. (19) in operator form 

1 1 1= +L v g N v                        (20)

where 

1 1 0
( )( ) = ( ), ( ) =
( )

+ ∫
x

a

f tL v x v x g x d d t
s t

1
1 1 1 2 2

1( ) = ( ( , ) ( )d ( , ) ( )d )d , [ , ]
( )

+ ∈∫ ∫ ∫
x b t

a a a
N v x K t v K t v t v C a b

s t
λ τ τ τ λ τ τ τ                  (21)

Using the above definitions we obtain the homotopy operator for Eq.(??) as 

( )1 1 0 0 1 1( , ) = ( )− + − −H v p L v u p u g N v                   (22)

where [0,1]∈p  is homotopy parameter and 0 ( )u x  defines as initial guess for Eq.(??). In a similar way, substituting the series 
solution (7) into equation 

1( , ) = 0H v p

leads 

1
1 0 1 0 1

=0 =0
= ( )

∞ ∞
+   

+ − −   
   
∑ ∑j j

j j
j j

L p v u p g u N p v                     (23)

Comparing the expressions with the same power of parameter p , we obtain 

0 0=v u                        (24)

1 1 0 1 0= − −v g u N v                      (25)

1 1= , = 2,3,−− j jv N v j                      (26)

Next, for the derivative of v  we define 

2 2
( )( ) = ( ), ( ) =
( )

′ f xL v x v x g x
s x

( )2 1 1 2 2
1( ) = ( , ) ( )d ( , ) ( )d
( )

− +∫ ∫
b x

a a
N v x K x t v t t K x t v t t

s x
λ λ                  (27)

By using the homotopy perturbation method, the solution of operator equation 

2 2 0 0 2 2( , ) = ( ) = 0− + + −H v p L v u p u N v g                    (28)

is searched in the form of power series 

=0
( ) = ( )

∞

′ ′∑ j
j

j
v x p v x                        (29)

If the series (29) possesses a radius of convergence not greater than 1, then the series is absolutely convergent. By putting 
(29) into the Eq. (28) and comparing the expressions with the same power of parameter p  leads to the relations 

0 0=′v u                     (30)

1 2 0 2 0=′ − −v g u N v                     (31)

2 1= , = 2,3,−′ − j jv N v j                       (32)

The convergence of the approximate solution (7) of Eq. (2) is given in the Theorem 3.. 

Theorem 3 Let 1 2, ([ , ] [ , ])∈ ×K K C a b a b , s , [ , ]∈f C a b  be continuous function on the respective domain. In addition, if the inequality 
2

1 1 2 2= ( ) (| | | | ) < 1− +c b a K Kβ λ λ   

                    (33)

where 
1=c
s

, holds and the initial value 0u  is chosen as continuous function, then the series in Eqs. (7) is uniformly 

convergent to the exact solutions ( )u x  in the sense of the 1C  norm on the interval [ , ]a b  for each [0,1]∈p . 

Proof. Since the kernels 1K , 2K  and the function ( )f x , ( )s x  with ( ) 0≠s x , [ , ]∈x a b , are continuous in the respective closed 
domain then 
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1 1 2 2
1 1| ( , ) | , | ( , ) | , | ( ) | , = , , [ , ]
( )

≤ ≤ ≤ ≤ ∀ ∈K x t K K x t K f x f c x t a b
s x s

     

Let 0u  be chosen as continuous function and 

0 0=u N 

Then from the relations (24)-(26) it follows that 

0 0 0= =v u N   

( )1 0 0 0 1 1 2 2| | ( ) ( ) (| | | | )≤ + + − + − +v d u c b a f b a v K Kλ λ           

0 0 0| | ( ) ( ) :=≤ + + − + −d N c b a f b a N Bα 

For the general case, from (26) we have the following estimation: 
1 1( ) − −≤ − k k

kv B b a α 

1−≤ kBβ                         (34)

where = ( )−b aβ α .

From the series (7), for [0,1]p∈  it follows that 

0
=0 =0 =1

| ( ) | | ( ) | =
∞ ∞ ∞

≤ ≤ +∑ ∑ ∑k
k k k

k k k
v x p v x v v v     

1
0

=1

∞
−≤ + ∑ k

k
N B β

0=
1

+
−
BN
β

                      (35)

Since the the estimate series (??) is the geometric series with the common ratio β  and therefore it is convergent if common 
ratio < 1β . It implies that ( )v x  is uniformly convergent on [ , ]a b  for each [0,1]∈p .

The assumptions for relations (30)-(32) implies 

0 0 0= =′v u N   

1 0 0 1 1 2 2( ( ) (| | | | ))′ ≤ + + − +v u c f b a v K Kλ λ           

0 0( ) = ′≤ + + −N c f b a N Bα 

1 1 1 2 2(( ) (| | | | )−′ ≤ − +k kv c b a v K Kλ λ       

1 .−≤ kv α 

Substituting (??) into the estimation of ( )kv x′  yields: 
2 ,−′ ≤ k

kv Bβ α 

1= .
( )

−

−
kB

b a
β

For the series in (29), we get 

0
=0 =0 =1

| ( ) | | ( ) | ,
∞ ∞ ∞

′ ′ ′ ′ ′≤ ≤ ≤ +∑ ∑ ∑k
k k k

k k k
v x p v x v v v     

=1( )

∞

≤ + ∑b a

0
1= .

( ) 1
 

+  − − 

BN
b a β

                     (36)

The series =1

∞∑ k
k
β  is the convergent geometric series possessing the common ratio < 1β . Hence, the solution ( )v x  is 

differentiable. So that both series (7) and (29) are convergent if | |< 1β . Then according (17) we obtain convergence of the series 
(7) to the exact solutions ( )u x  in the sense of the 1C  norm. 

The partial sum ( )ns x  in Eq. (16) and its derivative can be estimated as follows. 

Theorem 4 The error nE  of nth-order approximate solution of (19) and its error of n th-order approximate derivative 'nE  
defined by (18) can be estimated by 
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, '
1 1

≤ ≤
− − −

n n

n n
BE B E

b a
β β
β β

where :=|| ( ) ( ) ||,−n nE v x s x  ' :=|| ( ) ( ) ||′′ −n nE v x s x , while 1|| ||≤v B  and | |< 1β . 

Proof. 

= 1 = 1
| ( ) ( ) |= ( )

∞ ∞

+ +

− ≤∑ ∑n j j
j n j n

v x s x v x v

1

= 1
= .

1

∞
−

+

≤
−∑

n
j

j n
B B ββ

β
and 

= 1 = 1
| ( ) ( ) |= '( )

∞ ∞

′
+ +

′ ′− ≤∑ ∑n j j
j n j n

v x s x v x v

1

= 1
= .

1

∞
−

+

≤
− − −∑

n
j

j n

B B
b a b a

ββ
β

EXAMPLES
Let the error estimate nE  and relative errors nδ  be defined by 

= = | |max
≤ ≤

− −n d n d n
a x b

E u s u s 

and 

= 100%×d nu s 

 

Example 1 Consider the Fredholm-Volterra linear integral equation 

23

0 0

1 49 1 1 1( ) = 1 ( ) ( ) .
1 45 54 20 18

− − − +
+ ∫ ∫

x
u x x x xu t d t u t d t

x
                 (37)

Solution. The exact solution is 2( ) = 1−u x x . We begin by verifying the conditions in Theorem 2. Since the kernels 1K , 2K  and 
functions ( ), ( )f x s x  are continuous we need to check the inequality (15). For Eq. (37) we have 

1 2 1 1 2 2
1 1 1| |= ,| |= , = = 2, = = 1, = = 3
20 18

M K M K c
s

λ λ      

Hence 

1 1 2 2
14= ( )(| | | | ) = < 1
15

− +c b a M Mα λ λ

conditions of Theorem 1 holds, therefore HPM is convergent for any choice of initial guess. Let us choose 0
1( ) =

1+
u x

x
, then 

calculating the successive functions jv  determined by relations (11)-(13) we obtain 

0 0= ( 1) ( ) = 1,+v x u x

3
1

1 47 1= ( 1) 1 ,
1 45 54

 + − − + − + 
v x x x

x

2 3 4 5
2

61 1 47 1 1= ( 1) ,
1350 810 2430 3888 4860

 + − + + − − 
 

v x x x x x x

Table 1 shows that the errors decreases very fast when number of terms n  increases.

n   =n d nE u s− 

  (%)nδ   n   =n d nE u s− 

  (%)nδ

5  4.17343915 610−×   1.39114638 510−×   20  7.30756701 1910−×   2.43585567 1710−×  
10  2.35172667 1010−×   7.83908886 910−×   25  4.07349003 2310−×   1.35783001 2110−×  
15  1.31092835 1410−×  4.36976116 1310−×   30  2.27070391 2710−×   7.56901305 2610−×  

Table 1. Errors of the approximate solutions ( )ns x  defined by (16)  for Eq. (37).

Example 2 Consider the Fredholm-Volterra integral equation 

12

0 0

5 1 16 ( ) = 6 ( ) ( )
18 9 6

− − + +− + +∫ ∫
xx x x x t x te u x e xe xe u t d t e u t d t                  (38)
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with the exact solution ( ) = −x
du x e . 

Solution. Let initial guess 0 = 0u  be given. From Eq. (38) it follows that 
2

1 1 2 2= ( )(| | | | ) = < 1
108

− +
ec b a M Mα λ λ

Parameter α  in Eq. (38) satisfies the inequality (15). 

From the Table 2 it can be seen that the absolute and relative errors are decreased very fast when number of

n   =n d nE u s−    (%)nδ   n   =n d nE u s−    (%)nδ

5  8.52615826 810−×   8.526158263 610−×   20  5.59658360 3010−×   5.59658360 2810−×  
10  3.43859915 1510−×   3.43859915 1310−×   25  2.25784296 3710−×   2.25784296 3510−×  
15  1.38724210 2210−×   1.38724209 2010−×   30  9.10886559 4510−×   9.10886559 4310−×  

Table 2. Errors of the approximate solutions ( )ns x  defined by (16)  for Eq. (38)

terms n increases.

Example 3 Consider the Fredholm-Volterra integro-differential equation of third kind 
12

0 0

8 1 1 1( 1) ( ) = 1 ( )d ( )d
9 4 3 2

′+ + + + +∫ ∫
x

x u x x x xtu t t u t t                   (39)

with the exact solution =du x  and initial condition (0) = 0u . 

Solution. From Eq. (39) we have 

1 2 1 1 2 2
1 1 1| |= ,| |= , = = 1, = = 1, = = 1, ( ) = 1
3 2

−M K M K c b a
s

λ λ      

Hence, 
2

1 1 2 2
5= ( ) (| | | | ) = < 1
6

− +c b a M Mβ λ λ

satisfies the conditions of Theorem 3. By choosing the initial function 0 ( ) = 1u x  we obtain (Table 3): 

n   =n d nE u s−    (%)nδ   n   ˆn d nE u v−    (%)nδ

5  1.96687746 910−×   1.96687746 710−×   20  7.97754087 3610−×   7.97754087 3410−×  
10  4.75088504 1810−×   4.75088504 1610−×   25  3.82804414 4510−×   3.82804414 4310−×  
15  1.02017261 2610−×   1.02017261 2410−×   30  1.81398763 5310−×   1.81398763 5110−×  

Table 3. Errors of the approximation solutions (16) for Eq. (39)

From these results we can conclude that the approximate solution converges very fast to the exact solution when n  increases.

Example 4 Consider the Fredholm-Volterra integro-differential equation of third kind 

16 4 2 2

0 0

4 24 2 1 1 1 1 1( ) = (1 ) ( ) ( ) ( ) , (0) = 1
2 2 5 4 20 18 5 3

′ − + − − + − − −
+ + ∫ ∫

xxu x x x x xt u t d t xt x t u t d t u
x x

           (40)

Solution. Exact solution of Eq. (40) is 2= 1 3+du x . It is not difficult to see that 

2
1 1 2 2

11= ( ) (| | | | ) = < 1
40

− +c b a M Mβ λ λ

satisfies the condition of Theorem 3. 

The results in Table 4, show that the absolute and relative errors of Eq. (40) decreases very fast with initial guess 0 ( ) = 2+u x x .

n   ˆ=n d nE u v−    (%)nδ   n   =n d nE u s−    (%)nδ

5  5.79771528 710−×   1.44942882 510−×   20  4.38679146 2710−×   1.09669786 2510−×  
10  1.13820421 1310−×   2.84551053 1210−×   25  8.61212628 3410−×   2.15303157 3210−×  
15  2.23451662 2010−×   5.58629154 1910−×   30  1.69072818 4010−×   4.22682043 3910−×  

Table 4. Errors of the approximation solutions (16) for Eq. (40)

Example 5 Consider the Fredholm-Volterra integral equation of the third kind in the form 
2 22 4 2

0 0

5 5 1 1 1 1( ) = ( ) ( ) ( )
2 2 3 24 8 2

− − + + −
+ + ∫ ∫

xxu x x x x u t d t x t u t d t
x x

                (41)
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Solution. The exact solution is 2( ) =u x x  with the initial guess 0
2( ) =

2+
u x

x
. In this example, the conditions of the Theorem 

2 fails. Since 

1 2 1 1 2 2
1 1 1 1 4| |= ,| |= , = = , = = 1, = =
8 2 2 5

M K M K c
s

λ λ      

hence 

1 1 2 2
6= ( )(| | | | ) = > 1
5

− +c b a M Mα λ λ

From the Table 5, we can conclude that approximate solution for Eq. (41) would converges to the exact solution but it might 
depends on the choice of the initial guess.

n   ˆ=n d nE u v−    (%)   n   =n d nE u s−    (%)nδ

5  6.01228713 310−×   0.15030718  20  5.09091226 1110−×   1.27272807 910−×  
10  1.22543958 510−×   3.06359894 410−×   25  1.03764182 1310−×   2.59410456 1210−×  

15  2.49772003 810−×   6.24430008 710−×   30  2.11494619 1610−×   5.28736548 1510−×  

Table 5. Errors of the approximation solutions (16) for Eq. (41)

CONCLUSION
In this note, we have analyzed HPM for solving linear FVIEs and FVIDEs of the third kind. From the Theorem 2 it follows that 

HPM for FVIEs converges uniformly if < 1α . Meanwhile, HPM for FVIDE is uniformly convergent and differentiable if < 1β . 

Examples 1-2 corresponding Tables 1 and 2 verify that HPM is very accurate and stable for the FVIEs. Meanwhile Examples 
3-4 show that HPM is convergent to the exact solution very fast when number of points n  increases. Example 5, shows that convex 
HPM converges to the exact solution by the suitable choice of initial guess even though conditions of Theorem 2 is not satisfied. 

From the examples above, we can conclude that HPM method for solving FVIE and FVIDE converge very fast when number 
of point n  increases and given functions and kernels are satisfied the certain conditions in thm1 and thm3.
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