Low Power Multiplier Design for Polyrate Filter with Reduced Area and High Speed Design

S. Jagadeesh, S. Swapanthi

Asst. Professor, Department of ECE, Aditya Engineering College, Surampalem, A.P., India
PG Scholar (M.Tech), Department of ECE, Aditya Engineering College, Surampalem, A.P., India

ABSTRACT: Multi-rate Signal processing pre-owned in Digital Signal processing systems carry sample rate conversion. Systems with different input and output sample rates are used this type of technique. In multi rate signal processing applications very adequate and attractive techniques are Interpolation and Decimation. This paper come up with efficient area minimization with high speed and low power efficient VLSI architecture for polyphase decimation filter having decimation factor as three (D=3) using Booth multiplier. We also multiply signed numbers by using booth multiplier. In this algorithm there are individual key performance metrics those are number of slices, maximum operating frequency, number of LUT’s, input output bonds, power consumption, setup time, hold time, propagation delay between source and destinations are estimated for the filter of length nine (N=9). The power bender is diminished in polyphase decimation filter using Booth multiplier which preoccupies low-power when correlated to the conventional multiplier. By using carry look-ahead adder we can improve the speed. It was noticed that the proposed design provides increase in speed, reduction in area and slight reduction in power dissipation when set side by side to conventional and BFD multiplier and low complexity.

KEYWORDS: Polyphase decimation filter, Booth multiplier, BFD Multiplier architecture, Area, power dissipation, carry look ahead adder, speed.

I. INTRODUCTION

Decimation or Interpolation multi-rate filters are among the essential signal processing peripherals in space-borne apparatus where Finite Impulse Response (FIR) filters are often used to diminish nonlinear group delay and finite-precision effects. Cascaded (multi-stage) designs of Multi-Rate FIR (MRFIR) filters are further used for large rate change ratio, in order to lower the required throughput while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate.

In recent time, in the area of multirate digital signal processing there was a rapid progress. The applications of multirate systems include subband coding of video, audio, and speech signals, fast transforms using digital filter banks, wavelet analysis of all types of signals, and many other fields. The most important building blocks in multirate system are decimation and interpolation filters. A great amount of literature deals with the theory and design of decimation and interpolation filters.

Anyhow, issues concerning the VLSI implementation scheme for multirate filters have not been inspected comprehensively. Since the speed of processing time and the area of silicon are the essential factors are included in the VLSI implementation. A expandable implementation scheme to flexibly and efficiently implement the multirate FIR filters is conferred in this paper.

The approach in information technology and the increasing requirement of Very Large Scale Integration (VLSI) issues have resulted in accelerated development of a lot optimization algorithms and techniques. Power consumption is minimized and smaller area is some of the most important criteria for the DSP systems and high performance systems. Digital Signal Processing (DSP) systems have less sensitivity to component tolerances and environmental changes and the
dynamic range of the system can be increased by floating point arithmetic [2]. Multirate processing arises in many fields of
digital signal processing (DSP).

Multirate signal processing utilization includes digital audio tape, transmultiplexers, sub-band coding, speech
processing, analog voice privacy systems etc [1]. The sampling rate conversions are about 32 kHz to 44.1kHz in digital
audio and 44.1kHz to 48kHz and vice versa. Sample rate preocessing, bit rate processing and Symbol rate processing are
some of the signal processing issues in digital communication [3]. Polyphase structure utilizes FIR filter that leads to very
efficient implementation. Because FIR filters are conditionally stable and linear phase filters. Polyphase decomposition is
one of the most important techniques used in multirate signal processing. Linear phase in the sense that their phase delay
and group delay must be a constant. In data communications, if a pulse is smeared then the received signal does not convey
the desired information to the intended user. So, linear phase is the most inherent property of FIR filters.

We cannot achieve exact linear phase with IIR filters. But it can only achieved with FIR filters. Genetic algorithm
is used to find the multistage parameter combination for multistage sampling rate conversion FIR filter design [4]. A bit-
level optimized algorithm is used for the design of high-speed FIR decimation filters [5]. Efficient FIR filters are
implemented by using systolic decomposition [19]. Power dissipation is the factor that varies rapidly and is one of the main
challenging issues present-day. Texas Instruments are making digital circuits which require no power supply.

Particularly for implantable devices like artificial hearing aids and heart artificial transplantation, they are aiming at
devices which will work from body temperature. The power dissipation is minimized by reducing the switching activity
factor and by minimizing number of operations to be held in the filter structure. The adder and counter can reduce
the switching activity [8]. The multipliers have slightly less area and power than optimized tree multipliers while keeping
similar delay [9]. Power dissipation is obtained by altering multiplicands in software without any

A. Polyphase FIR filter

Finite Impulse Response (FIR) filter is a zero-phase filter with magnitude equal to unity in the pass band and zero
in the stop band [3]. FIR system is described by the difference equation shown in “(1)”.

\[y(n) = \sum_{k=0}^{M-1} b_k x(n - k) \]

(1)

Where \(k \) be the filter coefficients, \(x(n) \& y(n) \) are input and output sequences. The equivalent system function is
given in “(2)”.

II. PROPOSED POLYPHASE DECIMATION FILTER

A filter can be realized with several ways such as direct form, cascade form, linear phase and polyphase realizations.
When the transfer function of the filter is decomposed into number of sub branches, the process is called polyphase
realization [1] [2] [3].
Furthermore, the unit sample response of the FIR system is identical to the filter coefficients. FIR filters can be designed to provide exact linear phase over the whole frequency range and are always BIBO stable independent of the filter coefficients.

A linear-phase FIR filter of order \(N \) is either characterized by a symmetric impulse response given in “(3)”.

\[
\begin{align*}
 h(n) &= h(n - N) \\
 \text{or by an asymmetric impulse response of a FIR filter is given in “(4)”}
\end{align*}
\]

\[
\begin{align*}
 h(n) &= -h(n - N) \\
\end{align*}
\]

The symmetry or asymmetry property of a linear-phase FIR filter can be exploited to reduce the total number of multipliers into almost half of that in the direct form implementations of the transfer function.

In a normal case, the transfer function of \(L \)-branch polyphase decomposition of the transfer function of order \(N \) is given by “(5)”.

\[
\begin{align*}
 H(z) &= \sum_{n=0}^{L-1} z^{-n} E_m(z^L) \\
 E_m(z) &= \sum_{n=0}^{\frac{L-1}{2}} h(Ln + m)z^{-n} . 0 \leq m \leq L - 1
\end{align*}
\]

FIR filter is realized based on polyphase decomposition which leads a parallel structure. To illustrate this approach, a casual FIR transfer function \(H(z) \) of length nine is given in “(6)”, which is a function of filter coefficients \(h(k), 0 \leq k \leq 8 \).

\[
H(z) = h(0) + h(1)z^{-1} + + h(8)z^{-8}
\]

The above transfer function can be expressed as a sum of two terms, with one term containing the even-indexed coefficients and the other containing the odd-indexed coefficients which is given by

\[
\begin{align*}
 H(z) &= h(0) + h(2)z^{-2} + h(4)z^{-4} + h(6)z^{-6} + \\
 h(8)z^{-8} + z^{-1}[h(1) + h(3)z^{-2} + h(5)z^{-4} + h(7)z^{-6}]
\end{align*}
\]

Grouping the same equation differently, the transfer function is re-expressed in the form of sub bands as shown in “(7)”.

\[
H(z) = E_0(z^3) + z^{-1}E_1(z^3) + z^{-2}E_2(z^3)
\]

where

\[
\begin{align*}
 E_0(z) &= h(0) + h(3)z^{-1} + h(6)z^{-2} \\
 E_1(z) &= h(1) + h(4)z^{-1} + h(7)z^{-2} \\
 E_2(z) &= h(2) + h(5)z^{-1} + h(8)z^{-2}
\end{align*}
\]
Equation (7) is represented schematically in fig.1. The structure has delays, multipliers and accumulators.

B. Transposed Polyphase Decimation Filter

The decimator with a decimation factor D, where D is a positive integer develops an output sequence \(y(n) \) with a sampling rate is \((1/D)^{th}\) of the input sequence \(x(n) \). This is implemented by keeping every \(D^{th} \) sample of the input sequence and removing \(D-1 \) samples between consecutive samples. As a result, all input samples with indices equal to an integer multiple of \(D \) are retained at the output and all others are discarded, to generate the output sequence according to the relation given in “(8)”.

\[
y(n) = x(nD)
\]

(8)

Decimation results in aliasing, to avoid the aliasing effect an aliasing filter called low pass filter is used before down sampling [17].

The transposed form of the decimation filter is used in this paper to avoid the shift registers used in tapped delay structure. Here, at the sample rate, \(f_s \) \(x(n) \) comes into the filter, and is applied to all of the tap multipliers at the same time. The number of stages in the transposed filter depends on the value of decimation factor and number of coefficients. The number of stages is equal to the number of coefficients divided by decimation factor. If the coefficients are not a multiple of decimation factor then we have to append zeros.

The structure of proposed transposed form of polyphase filter for decimation factor of three is shown in fig.2. In this structure, during each cycle, input \(x(n) \) is passed through the tap multiplier. Initially the input sequence \(x(n) \) is given through a parallel input serial output (PISO) shift register.

The output from parallel input serial output (PISO) is given to three sub filter section where the input sequences are processed in parallel form by means of serial input parallel output (SIPO) shift register. Each section, the input is multiplied with the coefficients. Since the processing is done in parallel, this structure improves the speed of operation. The coefficients are cycled through their values at the sample rate, but the indexes of the coefficients at any given time are separated by \(D \), the decimation rate.

![Fig.1 Polyphase FIR Filter Structure](image-url)

The coefficient is multiplied with the sample, but the input samples and coefficients changing during each cycle. The function of the accumulator is to accumulate the value of multiplier for every 3\((D) \) cycles. Carry look-ahead adder is used to perform addition in order to increase the speed of operation. The decimated output \(y(n) \) is obtained using this polyphase structure.
III. MULTIPLIER ARCHITECTURES

There are several multipliers available to perform multiplications. Shift and add, BFD multiplication, conventional multiplication and spurious power suppression are some of the techniques used to perform multiplication. In this paper booth multiplier is compared with the conventional and BFD multiplier.

A. BOOTH MULTIPLIER:

Fig 3 BOOTH MULTIPLIER
It is a powerful algorithm for signed-number multiplication, which treats both positive and negative numbers uniformly.

For the standard add-shift operation, each multiplier bit brings out one multiple of the multiplicand to be added to the partial product. If the multiplier is very large, then a large number of multiplicands have to be added. In this case, the delay of multiplier is determined primarily by the number of additions to be performed. If there is a way to reduce the number of the additions, the performance will get better.

The number of multiplicand multiples will be reduced by using the Booth algorithm method. For a given range of numbers to be represented, a higher representation radix leads to fewer digits. Since a k-bit binary number can be interpreted as K/2-digit radix-4 number, a K/3-digit radix-8 number, and so on, it can deal with more than one bit of the multiplier in each cycle by using high radix multiplication. This is shown for Radix-4 in the example below.

RADIX – 4 BOOTH ALGORITHM

Multiplicand	A = ● ● ● ●
Multiplier	B = (●●) (●●)
Partial product bits	● ● ● (B₁B₀)₂ A₄⁰
	● ● ● (B₂B₁)₂ A₄¹
Product	P = ● ● ● ● ● ● ●

Fig. Radix-4 multiplication in dot notation

As shown in the figure above, if multiplication is done in radix 4, in each step, the partial product term \((B_iB_{i-1})_2 A\) need to be formed and added to the cumulative partial product. Whereas in radix-2 multiplication, each row of dots in the partial products matrix represents 0 or a shifted version of \(A\) must be included and added.

Table 1 below is used to convert a binary number to radix-4 number.

Initially, a “0” is placed to the right most bit of the multiplier. Then 3 bits of the multiplicand is recoded according to table below or according to the following equation:

\[Z_i = -2x_{i+1} + x_i + x_{i-1} \]

Example:

Multiplier is equal to 0 1 0 1 1 10
Then a 0 is placed to the right most bit which gives 0

1 0 1 1 10 0

The 3 digits are selected at a time with overlapping left most bit as follows:
For example, an unsigned number can be converted into a signed-digit number radix 4:

$$(10\ 01\ 11\ 01\ 10\ 10\ 11\ 10)_2 = (-2\ -1\ -1\ 0\ -2)_4$$

The Multiplier bit-pair recoding is shown in Table 3.2

<table>
<thead>
<tr>
<th>X</th>
<th>Z0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1 Radix-4 Booth encoder

<table>
<thead>
<tr>
<th>X0</th>
<th>X1</th>
<th>X2</th>
<th>Z0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2 Radix-4 Booth encoder

<table>
<thead>
<tr>
<th>X0</th>
<th>X1</th>
<th>X2</th>
<th>+0*multiplicand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>+1*multiplicand</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>+1*multiplicand</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>+2*multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-2*multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-1*multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-1*multiplicand</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0*multiplicand</td>
</tr>
</tbody>
</table>

Here $-2*multiplicand$ is actually the 2s complement of the multiplicand with an equivalent left shift of one bit position. Also, $+2*multiplicand$ is the multiplicand shifted left one bit position which is equivalent to multiplying by 2.

To enter $\pm 2*multiplicand$ into the adder, an (n+1)-bit adder is required. In this case, the multiplicand is offset one bit to the left to enter into the adder while for the low-order multiplicand position a 0 is added. Each time the partial product is shifted two bit positions to the right and the sign is extended to the left. During each add-shift cycle, different versions of the multiplicand are added to the new partial product depends on the equation derived from the bit-pair recoding table above.
Let’s see some examples:

\[
\begin{array}{c}
000011 \\
\times \quad 011101 \\
\hline
000000000011 \\
1111111101 \\
00000110 \\
1 \times 00001010111 \\
\end{array}
\]

\[(+3) \quad (+29) \quad (+2) \quad (+1) \quad (+1) \]

\[(87) \]

B. Carry look-ahead adder (CLA)

The carry look-ahead adder (CLA) solves the carry delay problem by calculating the carry signals in advance, based on the input signals. It is based on the fact that a carry signal will be generated in two cases: (1) when both bits \(a_i \) and \(b_i \) are 1, or (2) when one of the two bits is 1 and the carry-in is 1. Thus, one can write,

\[
c_{i+1} = a_i \cdot b_i + (a_i \oplus b_i) \cdot c_i
\]

\[
s_i = (a_i \oplus b_i) \oplus c_i
\]

The above two equations can be written in terms of two new signals \(P_i \) and \(G_i \), which are shown in Figure 4:

\[c_{i+1} = G_i + P_i \cdot a_i \]

\[s_i = P_i \oplus c_i \]

\[G_i = a_i \cdot b_i \]

\[P_i = a_i \oplus b_i \]
Pi and Gi are called the carry generate and carry propagate terms, respectively. Notice that the generated and propagated terms only depend on the input bits and thus will be valid after one and two gate delay, respectively. If one uses the above expression to calculate the carry signals, one does not need to wait for the carry to ripple through all the previous stages to find its proper value. Let’s apply this to a 4-bit adder to make it clear.

Putting I = 0,1,2,3 in Equation 5, we get

\[
\begin{align*}
c_1 &= G_0 + P_0.c_0 \\
c_2 &= G_1 + P_1.c_1 + P_0.c_0 \\
c_3 &= G_2 + P_2.G_1 + P_2.P_1.G_0 + P_2.P_0.c_0 \\
\end{align*}
\]

Implementation Observations:

The implementation of the proposed algorithm is illustrated in the form of various pictorial views obtained during the process of FPGA Implementation. Figure presents the Synthesis report of integrated Interpolator and Decimator module which was constructed from a gate level net list to the model of a circuit described in Verilog HDL. Figure shows the RTL view of proposed algorithm whereas Figure depicts the technical schematic view of targeted FPGA device.

IV. RESULTS AND DISCUSSION

In this paper, we have presented how to make FIR filters applicable for multiple sampling rates with the help of interpolator and decimator. For reducing the complexity we had used the low complexity FIR filter design with the help of programmable shifting method. The proposed technique in this paper is able to reduce the complexity of decimator filter and interpolator filter circuits in DSP processing where multiple sampling rates are required.

The polyphase decimation filter is designed and verified using Xilinx 14.3 and ModelSim 6.3g. The Xilinx simulation results are as follows. The RTL (Register Transfer Logic) schematic layout, technology schematic layout and design summary of Multi rate FIR filter is shown in below. 6. The result is the output of the multiplier is 16 bits wide. The below fig shows the detailed RTL schematic of Multiplier architecture.
V. CONCLUSION

In this paper, a polyphase decimation filter with high speed, area and power efficient Booth multiplier architecture has been proposed. Various key performance metrics such as number of slices, maximum operating frequency, number of LUT’s, input-output bonds, power consumption, setup time, hold time, propagation delay between source and destinations are estimated for the filter of length nine (N=9). Power dissipation is reduced slightly in polyphase decimation filter using this low-power multiplier architecture when compared to the conventional shift and add multiplier and BFD multiplier.
Advantages:

The advantages of this work is that it reduced complexity which in turn reduces the area, power dissipation ,gives higher throughput rate, higher processing speed, fast computation, LFSR can rapidly transmit a sequence that indicates high-precision relative time offsets and many more.

REFERENCES