ABSTRACT

Alzheimer's disease (AD) is an irreversible, progressive brain disorder that gradually devastates memory and thinking skills, and in the end the capacity to do the simplest tasks. It is most widely recognized type of neurodegenerative dementia, influencing around 30 million individuals around the world. In its initial stages, memory misfortune is gentle, however with late-stage Alzheimer's, people lose the capacity to bear on a discussion and react to their surroundings. Alzheimer's is the sixth driving reason for death in the United States. In spite of late advances in comprehension its atomic pathology, there are no mechanism based medications as of now that are accessible to stop the movement of AD. Since amyloid-β-peptide (Aβ), an essential part of feebile plaques, is thought to be a focal pathogenic culprit, a few sickness adjusting treatments are being created, including inhibitors of Aβ-delivering proteases and immunotherapies with hostile to Aβ antibodies. Drug repositioning or repurposing is viewed as an integral and sensible way to deal with and recognize new drug candidates for AD. This critique will talk about the clinical significance of an appealing hopeful compound and points of view in regards to the conceivable repositioning of oncology medications for the treatment of AD.

INTRODUCTION

Alzheimer's disease (AD) is a noteworthy kind of dementia that distresses around 30 million individuals overall [1-3]. Pathologically, this disease is portrayed by the presence of feebile plaques, made essentially out of amyloid β-peptide (Aβ), and neurofibrillary tangles, made for the most part out of phosphorylated tau protein, and in addition loss of neurotransmitters and neurons [4-6]. The few medications as of now endorsed for clinical use, for example, donepezil, give just symptomatic and transient advantages [7, 8]. Since the collection of Aβ, especially the oligomeric species, seems to assume an essential pathogenic part in AD [9-11], it is an essential focus for infection changing therapeutics of AD. Aβ is created by serial cleavages of its antecedent, amyloid forerunner protein (APP), by β-secretase (or BACE1) and γ-secretase [12-15]. Along these lines, inhibitors or modulators of these proteases are being created. Other conceivable mediations incorporate Aβ immunotherapy to advance Aβ clearance and restraint of Aβ oligomerization [16-20]. No such medications have yet been demonstrated clinically powerful, notwithstanding the urgent need to discover new medicines for AD. It, therefore, appears an appealing technique to evaluate the counter Aβ impacts of medications affirmed for the treatment of different diseases. Such a "drug repositioning" or "repurposing" methodology is thought to have a few favourable circumstances, including lessened time and costs fundamental for clinical trials [21-24]. A paper by Hayes et al. portrays an intriguing oncology tranquilize that may possibly be utilized as an ailment changing medication in patients with AD [25-29].

A new candidate drug for the treatment of AD

There have been a few perceptions from various studies that propose a backwards relationship amongst disease and AD; tumor patients have been appeared to have a lower danger of growing AD, and comparably [30-34], those determined to have AD appear to have a lower danger of creating growth. Along these lines, it appeared to be conceivable that anticancer medications may apply good impacts on AD. By screening roughly 90 FDA-endorsed
oncology sedates, a gathering drove by Madepalli Lakshmana observed that BCNU (1,3 bis(2-chloroethyl)-1-nitrosourea or carmustine), [35-39] an alkylation specialist at present used to treat patients with mind tumors, for example, threatening gliomas, has powerful movement in diminishing Aβ generation by refined cells overexpressing APP [40-43]. Ensuing examination of the instruments by which BCNU diminishes Aβ generation found that BCNU builds the discharge of APPα, a protein resulting from alternative α-cleavage of APP inside the Aβ locale, diminishes the levels of C-terminal sections of APP and expands the outflow of juvenile APP on the cell surface. BCNU did not specifically influence the enzymatic exercises of B-, γ- and α-secretases [44-47]. As needs be, BCNU seems to lessen Aβ by changing the trafficking and processing of APP without straightforwardly influencing secrecetase activities. Likewise, BCNU was found to increase transforming growth factor (TGF) - β1 levels in cell media and cell separates an intriguing observation in view of the involvement of the TGF-β1 pathway in AD [48-52].

Taking after these cell-based investigations, the creators performed in vivo tests to figure out if BCNU could decrease Aβ generation in a transgenic mouse model, in which Aβ plaques show up as ahead of schedule as six months of age [53-58]. Intraperitoneal infusion of 0.5 mg/kg BCNU, a non-harmful measurements, for 60 days, from four to six months of age, brought about the checked lessening of Aβ plaque load in the mind. Besides, BCNU treatment diminished levels of Aβ and APP C-terminal parts and expanded levels of discharged APPα in mouse brains [59-63], reiterating the progressions saw in cell societies. Besides, BCNU treatment lessened the quantity of Iba1-positive microglia, showing that this operator smoothers microglial initiation in the mouse mind. This impact might be identified with the TGF-β1 pathway [64-69], since TGF-β1 assumes a constitutive part in the concealment of aggravation. An unobtrusive increment in astroglial TGF-β1 production in APP transgenic mice has been appeared to bring about a critical decrease of Aβ. In addition, a particular disability of the TGF-β1 flagging pathway has been shown in the AD cerebrum, and TGF-β1 has been found to apply neuroprotective impacts against different put-down, including Aβ harmfulness [70-74]. Along these lines, BCNU treatment may lessen Aβ creation through consolidated impacts on APP trafficking and preparing and on the TGF-β1 pathway.

Oncology drugs have potential utility for AD

The study by Hayes et al. distinguished BCNU as a potential anti-Aβ drug. In any case, a few inquiries should be explored, incorporating whether ceaseless treatment with BCNU can avoid subjective impedance in the mouse model and whether BCNU up-controls TGF-β1 in vivo [75-77]. Since BCNU is metabolized quickly in the cerebrum, the creators recommended that it’s hostile to amyloidogenic impacts may come about because of the activity of one of its metabolites; in any case, such a compound stays to be distinguished. Security is a noteworthy issue to be considered. For the treatment of cerebrum tumors, patients are embedded with BCNU wafers to maintain a strategic distance from systemic reactions [78-81]. In spite of the fact that BCNU displayed a hearty Aβ-diminishing impact in vivo at non-lethal fixations, the wellbeing of long haul use has not yet been built up. On the off chance that a metabolite of BCNU with an intense hostile to Aβ activity is distinguished, a more secure compound with less danger might be created [82-86].

Potential AD treatment with existing oncology drugs gives off an impression of being a promising methodology. For example, treatment with bexarotene, an agonist of retinoid X receptors (RXRs) that is utilized to treat patients with T cell lymphoma [87-91], was as of late found to prompt obsessive and behavioural upgrades in transgenic mouse models of AD. Bexarotene stimulates the expression of apolipoprotein E (ApoE) and its lipid transporters ABCA1 and ABCG1, and facilitates Aβ clearance in an ApoE subordinate way [92-95]. This specialist likewise seems to advance microglial phagocytosis. Therefore, RXR agonists might be of helpful utility in the treatment of AD. Likewise, tranquillizes that activate retinoic corrosive receptors (RARs), for example, acitretin and tamibarotene, which are utilized to treat psoriasis and intense promyelocytic leukemia, respectively, have been reported to have beneficial effects on APP processing by enhancing non-amyloidogenic α-secretase processing of APP [96-98], presumably through the incitement of α-secretase (or ADAM10) expression. Since the organization of RAR agonists to APP transgenic mice diminishes Aβ levels in the cerebrum, they are promising competitor drugs for the treatment of AD. Phase II clinical trials are in progress to approve their clinical adequacy. Other oncology drugs with potential utility for AD incorporate imatinib and paclitaxel, yet both have the drawbacks of poor central nervous system penetration.

CONCLUSION

BCNU is an exceptional new expansion to the rundown of competitor oncology drugs with potential clinical viability in AD. More preclinical work, including elucidation of its systems of activity, is vital before BCNU continues to clinical trials [99, 100]. Obviously, different classes of medications other than those utilized for chemotherapy are viewed as potential applicant drugs for AD. Future thorough endeavors to create sickness altering drugs through medication repositioning or repurposing may prompt the rise of effective treatments for AD.
REFERENCES