Multicomponent Synthesis and Pharmacological Screening of 3-Cyano-4-Imino-
2-Methylthio-8-Nitro-4H-Pyrimido [2,1-b] [1,3] Benzothiazole and its 2-
Substituted Derivatives

A. B. Chidrawar1, G. S. Waghmare1, R. U. Pokalwar2, *S. V. Kuberkar1

1. P.G. Research Centre, Department of Chemistry, Yeshwant College, Nanded- 431602, Maharashtra, India.
2. Department of Chemistry, Degloor College, Degloor- 431717, Nanded, Maharashtra, India.

ABSTRACT
Multicomponent reactions which are one pot reactions constitute an especially attractive recent synthetic strategy since they provide easy and rapid access to large number of organic compounds with diverse substitution pattern, we report multicomponent synthesis of novel fused heterocyclic compound, 3-
cyano-4-imino-2-methylthio-8-nitro-4H-pyrimido [2,1-b] [1,3] benzothiazole and its 2-substituted
derivatives.
2-Substituted derivatives of 3-cyano-4-imino-2-methylthio-8-nitro-4H-
pyrimido [2,1-b] [1,3] benzothiazole have been prepared through One Step Multicomponent reaction by heating a mixture of 2-
amino-6-nitro benzothiazole and bis methylthio methylene malononitrile independently with aromatic
amines/phenols/hetarylamines/ compounds containing active methylene group respectively in the
presence of dimethyl formamide and catalytic amount of anhydrous potassium carbonate. All these newly
synthesized compounds were characterized by IR, NMR, Mass spectroscopy and all the compounds were
screened for antibacterial activity.

Keywords: 2-amino-6-nitro benzothiazole, antibacterial activity, bis methylthio methylene
malononitrile, DMF, multicomponent reaction, potassium carbonate, pyrimido
benzothiazole

Received 10 July 2014 Received in revised form 07 August 2014 Accepted 10 August 2014

*Address for correspondence:
S. V. Kuberkar,
P.G. Research Centre, Department of Chemistry, Yeshwant College, Nanded- 431602, Maharashtra, India.
E-mail: anilchidrawar74@gmail.com

INTRODUCTION
A survey of literature reveals that very little work has been carried out on synthesis of
fused pyrimido benzothiazole exhibits activities like anti-allergic [1-4], antiparkinsonian [1], herbicidal [2], antiviral [3],
phosphodiesterase inhibition [4], anti-
parasitic activity[5], anti-inflammatory [6],
fungicidal [7], antitumor [8] and pharmacophore activity[9-11]. Wade James J. et.al. [1]
reported synthesis and anti-allergic activity of some acidic derivatives of 4H-pyrimido
reported the preparation of benzothiazolo
[3,2-a]pyrimidine-3-carbonitrile. These compounds were screened for Leishmanicidal and herbicidal activities and few of
them exhibited significant activity.
Pyrimido [2,1-b] benzothiazole and its 8-
substituted derivatives were synthesized by
Nair Mohan D.et.al[3]. These derivatives
were found to have antiviral activity. 5-(4-
Oxo-4H-pyrimido [2,1-b] benzothiazolo)tetrazole possessing antiallergic activity,
reported by Covington Robert R. et.al. [4].
Synthesis of 7,8-disubstituted-4-oxo-3-(4H-
pyrimido [2,1-b] benzothiazole) carboxylic
acids and esters has been reported by
Alaimo Robert J. [5] These compounds were examined for antiparasitic activity. M.F.G.
Stevens et.al. [12-15] reported the compounds containing benzothiazole possess antitumor activity against renal,
ovarian and breast cancer cell line.
In view of these taking into consideration
the importance of biological activities and
various application of pyrimidines, oxopyrimidines, imino-pyrimidines,[16-23] amino and imino benzothiazoles, synthesis of such condensed system has attracted much attention in recent years. In this note, we report one pot multicomponent synthesis of 3-cyano-4-imino-2-methylthio-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole and its 2-substituted derivatives.

MATERIALS AND METHODS

Experimental Section:

All melting points were determined in open capillary tube and were uncorrected. IR spectra were recorded with potassium bromide pellets technique, 1H NMR spectra were recorded on AVANCE 300 MHz Spectrometer in DMSO using TMS as internal standard. Mass spectra were recorded on a FT VG 7070 H Mass Spectrometer using EI technique at 70 eV. All melting points were determined in open capillary tube and were uncorrected. IR spectra were recorded on KBr/cm−1. MS were recorded on a FT VG 7070 H Mass Spectrometer in DMSO using TMS as internal standard. Mass spectra were recorded on AVANCE 300 MHz Spectrometer using TMS as internal standard. Mass spectra were recorded on AVANCE 300 MHz Spectrometer using TMS as internal standard. Mass spectra were recorded on AVANCE 300 MHz Spectrometer using TMS as internal standard. Mass spectra were recorded on AVANCE 300 MHz Spectrometer using TMS as internal standard. Mass spectra were recorded on AVANCE 300 MHz Spectrometer using TMS as internal standard. Mass spectra were recorded on AVANCE 300 MHz Spectrometer using TMS as internal standard.

A mixture of 2-amino-6-nitrobenzothiazole (I) [0.195gm, 0.001 mole] and bismethylthio methylene malononitrile (A) [0.170gm, 0.001mol] was refluxed in the presence of 5 ml of dimethyl formamide and a pinch of anhydrous potassium carbonate (0.2 gm) was refluxed independently with one mole equivalent of aryl amines/ phenols/ heteryl amines and compounds containing active methylene group for six hours. The progress of reaction was monitored by TLC. After completion of reaction, the reaction mixture was cooled to room temperature and poured on ice cold water. The separated solid product was filtered, washed with water and recrystallized from ethanol to give respective product.

1) 3-Cyano-4-imino-2-(p-chloroanilino)-8-nitro-4H-pyrimido[2,1-b][1,3] benzothiazole (II-a)

Yield: 66 %, Melting Point: 252° C

IR: (KBr / cm−1): 3444 (=NH), 3382 (N=O), 3112 (Ar-H), 3120 (-C=O), 1620 (C=N), 1538 & 1515 (-NO2)

1H-NMR: (DMSO) : δ 4.00 (s 1H N-H), δ 6.60 (d 1H Ar-H), δ 6.70 (d 1H Ar-H), δ 6.90 (d 1H Ar-H), δ 7.20 (d 1H Ar-H), δ 7.35 (d 1H Ar-H), δ 8.40 (d 1H Ar-H), δ 8.70 (d 1H Ar-H), δ 8.90 (s 1H =NH)

MS: (m/z : RA %): = 397 (M+1)

Elemental analysis: C12H12N5O4S2, Calculated: (%) C 51.46, H 2.29, Cl 8.93, N 22.05, O10.05, S 20.19

General Method

A mixture of 2-amino-6-nitro benzothiazole (I) [0.195gm, 0.001mole] and bismethylthio methylene malononitrile (A) [0.170gm, 0.001mol] was refluxed in the presence of dimethyl formamide (5 ml) and a pinch of anhydrous potassium carbonate (0.2 gm) was refluxed independently with one mole equivalent of aryl amines/ phenols/ heteraryl amines and compounds containing active methylene group for six hours. The progress of reaction was monitored by TLC. After completion of reaction, the reaction mixture was cooled to room temperature and poured on ice cold water. The separated solid product was filtered, washed with water and recrystallized from ethanol to give respective product.

2) 3-Cyano-4-imino-2-(p-nitroanilino)-8-nitro-4H-pyrimido[2,1-b][1,3] benzothiazole (II-b)

Yield: 59 %, m.p.: 271 ° C

IR: (KBr / cm−1): 3450 (=NH), 3100 (Ar-H), 2208 (-CN), 1622 (C-N), 1340 & 1520 (-NO2)

1H-NMR: (DMSO) : δ 4.30 (s 1H N-H), δ 6.50 (d 1H Ar-H), δ 7.30 (d 2H Ar-H), δ 7.50 (d 2H Ar-H), δ 7.95 (d 2H Ar-H), δ 8.65 (s 1H =NH)
3) 3-Cyano-4-imino-2-(p-hydroxyanilino)-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II-c)

Yield: 53 %, m.p.: 265 °C

IR: (KBr / cm⁻¹): 3550 (O-H), 3440 (=NH), 3110 (A-H), 2212 (-C≡N), 1615 (C=N), 1345 & 1517 (-NO₂)

¹H-NMR: (DMSO): δ 4.12 (s 1H N-H), δ 4.5 (s 1H -OH), δ 6.50 (d 2H Ar-H), δ 6.60 (d 2H Ar-H), δ 6.75 (d 1H Ar-H), δ 7.85 (d 1H Ar-H), δ 8.10 (d 1H Ar-H), δ 8.85 (s 1H =NH)

MS: (m/z : RA %): 379 (M+1)

Elemental analysis: C₁₂H₁₀N₆O₅S₂

Calculated: (%) C 53.96, H 2.66, N 22.21, O 12.69, S 8.47 Found (%): C 53.91, H 2.64, N 12.27, O 12.65, S 8.45

4) 3-Cyano-4-imino-2-(p-toluidino)-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II-d)

Yield: 64 %, m.p.: 221 °C

IR: (KBr / cm⁻¹): 3450 (=NH), 3120 (A-H), 2210 (-C≡N), 1620 (C=N), 1342 & 1515 (-NO₂)

¹H-NMR: (DMSO): δ 2.35 (s 3H Ar-CH₃), δ 4.10 (s 1H NH), δ 6.55 (d 2H Ar-H), δ 6.70 (d 1H Ar-H), δ 7.10 (d 2H Ar-H), δ 7.80 (d 1H Ar-H), δ 8.20 (d 1H Ar-H), δ 8.50 (s 1H =NH)

MS: (m/z : RA %): 377 (M+1)

Elemental analysis: C₁₂H₁₁N₆O₅S₂

Calculated: (%) C 57.44, H 3.21, N 22.33, O 8.50, S 8.52 Found (%): C 57.42, H 3.17, N 22.31, O 8.47, S 8.50

5) 3-Cyano-4-imino-2-(4'-nitrophenoxy)-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II-e)

Yield: 51 %, m.p.: 310 °C

IR: (KBr / cm⁻¹): 3440 (=NH), 3105 (A-H), 2205 (-C≡N), 1625 (C=N), 1340 & 1520 (-NO₂), 1067 (-C-O-C)

¹H-NMR: (DMSO): δ 6.60 (d 1H Ar-H), δ 7.10 (d 2H Ar-H), δ 7.80 (d 1H Ar-H), δ 7.95 (d 1H Ar-H), δ 8.25 (d 2H Ar-H), δ 8.95 (s 1H =NH)

MS: (m/z : RA %): 409 (M+1)

Elemental analysis: C₁₂H₁₀N₆O₅S₂

Calculated: (%) C 50.00, H 1.97, N 20.58, O 19.59, S 7.85 Found (%): C 49.95, H 1.95, N 20.55, O 19.55, S 7.80

6) 3-Cyano-4-imino-2-(4'-carboxylphenoxy)-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II-f)

Yield: 56 %, m.p.: 234 °C

IR: (KBr / cm⁻¹): 3510 (O-H), 3417 (=NH), 3112 (A-H), 2202 (-C≡N), 1338 & 1515 (NO₂), 1060 (-C-O-C), 1620 (C=O)

¹H-NMR: (DMSO): δ 6.60 (d 1H Ar-H), δ 7.15 (d 2H Ar-H), δ 7.90 (d 1H Ar-H), δ 8.10 (d 1H Ar-H), δ 8.40 (d 2H Ar-H), δ 8.70 (s 1H =NH), δ 10.50 (s 1H -COOH)

MS: (m/z : RA %): 408 (M+1)

Elemental analysis: C₁₂H₁₀N₆O₅S₂

Calculated: (%) C 53.05, H 2.21, N 17.19, O 19.64, S 7.87 Found (%): C 53.05, H 2.21, N 17.15, O 19.60, S 7.85

7) 3-Cyano-4-imino-2-(phenoxy)-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II-g)

Yield: 61 %, m.p.: 258 °C

IR: (KBr / cm⁻¹): 3400 (=NH), 3110 (A-H), 2210 (-C≡N), 1335 & 1520 (-NO₂), 1070 (-C-O-C)

¹H-NMR: (DMSO): δ 6.40 - 9.10 (m 8H Ar-H), δ 9.50 (s 1H =NH)

MS: (m/z : RA %): 346 (M+1)

Elemental analysis: C₁₂H₁₀N₆O₅S₂

Calculated: (%) C 56.19, H 2.50, N 19.27, O 13.21, S 8.82 Found (%): C 56.17, H 2.45, N 19.25, O 13.19, S 8.80

8) 3-Cyano-4-imino-2-(4'-methylphenoxy)-8-nitro-4H-pyrimido [2,1-b] [1,3]benzothiazole (II-h)

Yield: 74 %, m.p.: 277 °C

IR: (KBr / cm⁻¹): 3450 (=NH), 3112 (A-H), 2202 (-C≡N), 1342 & 1515 (-NO₂), 1071 (-C-O-C)

¹H-NMR: (60 MHz, DMSO): δ 2.50 (s 3H -CH₃), δ 6.50 (d 1H Ar-H), δ 6.70 (d 2H Ar-H), δ 7.10 (d 2H Ar-H), δ 8.10 (d 1H Ar-H), δ 8.30 (d 1H Ar-H), δ 8.90 (s 1H =NH)

MS: (m/z : RA %): 378 (M+1)

Elemental analysis: C₁₂H₁₀N₆O₅S₂

Calculated: (%) C 57.29, H 2.94, N 18.56, O 12.72, S 8.50 Found (%): C 57.27, H 2.90, N 18.52, O 12.70, S 8.45

9) 3-Cyano-4-imino-2-(malononitrile)-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II-i)

Yield: 58 %, m.p.: 273 °C

IR: (KBr / cm⁻¹): 3440 (=NH), 3111 (A-H), 2205 (-C≡N), 1340 & 1510 (-NO₂)

¹H-NMR: (DMSO): δ 4.20 (s 1H CH), δ 6.90
(d 1H Ar-H), 7.60 (d 1H Ar-H), 8.15 (d 1H Ar-H), δ 8.65 (s 1H =NH)

MS: (m/z : RA %): 336 (M+1)

Elemental analysis : C_{14}H_{12}N_{2}O_{4}S, Calculated: (%) C 50.15, H 1.50, N 25.29, O 19.95, S 9.51

IR: (KBr / cm⁻¹): 3434 (=NH), 3110 (Ar-H), 2980 (C-H), 1620 (C=O), 1338 & 1515 (=NO₂)

δ-H-NMR : (DMSO) : δ 2.10 (s 3H -CH₃), δ 3.95 (s 1H -CH), δ 4.20 (q 2H -CH₂), δ 6.50 (d 1H Ar-H), δ 7.80 (d 1H Ar-H), δ 7.95 (d 1H Ar-H), δ 8.60 (s 1H =NH)

MS: (m/z : RA %): 400 (M+1)

Elemental analysis : C₁₁H₁₂N₃O₂S, Calculated: (%) C 51.12, H 3.28, N 17.54, O 20.03, S 8.03 Found (%): C 51.08, H 3.25, N 17.50, O 20.01, S 8.01

IR: (KBr / cm⁻¹): 3442 (=NH), 3110 (Ar-H), 2980 (C-H), 1620 (C=O), 1340 & 1517 (=NO₂)

δ-H-NMR : (DMSO) : δ 2.10 (s 6H -CH₃), δ 3.95 (s 1H -CH), δ 6.05 (d 1H Ar-H), δ 7.75 (d 1H Ar-H), δ 8.10 (d 1H Ar-H), δ 8.80 (s 1H =NH)

MS: (m/z : RA %): 370 (M+1)

Elemental analysis : C₁₁H₁₂N₅O₅S, Calculated: (%) C 52.03, H 3.00, N 18.96, O 17.33, S 8.68 Found (%): C 52.01, H 2.95, N 18.92, O 17.30, S 8.65

IR: (KBr / cm⁻¹): 3430 (=NH), 3127 (Ar-H), 2205 (-C≡N), 1625 (C=O), 1338 & 1515 (-NO₂)

δ-H-NMR : (DMSO) : δ 2.10 (s 1H NH), δ 2.6 - 2.8 (m 8H -CH₂), δ 6.70 (d 1H Ar-H), δ 7.90 (d 1H Ar-H), δ 8.10 (d 1H Ar-H), δ 8.60 (s 1H =NH)

MS: (m/z : RA %): 356 (M+1)

Elemental analysis : C₁₆H₁₄N₆O₅S, Calculated: (%) C 54.23, H 3.98, N 23.71, O 9.03, S 9.05 Found (%): C 54.20, H 3.92, N 23.65, O 9.00, S 9.01

RESULTS AND DISCUSSION

Multicomponent reactions which are one pot reactions constitute an especially attractive recent synthetic strategy since they provide easy and rapid access to large number of organic compounds with diverse substitution pattern. In present work, we report multicomponent synthesis of novel fused heterocyclic compounds, 3-cyano-4-imino-2-methylthio-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II-I) and its 2-substituted derivatives (IIa to IIo).

Accordingly, a mixture of 2-Amino-6-nitro benzothiazole (I) and bis methylthio methylene malononitrile (A) was refluxed in dimethyl formamide and anhydrous K₂CO₃ independently with aryl amines / phenols / heteryl amines and compounds containing active methylene group to isolate respective 2-substituted derivatives.
Authentication of 2-substituted derivatives obtained by above multicomponent reaction was done by isolating them in two steps. In first step, the required compound 3-cyano-4-imino-2-methylthio-8-nitro-4H-pyrimido[2,1-b][1,3]benzothiazole (II) was prepared by heating 2-amino-6-nitro benzothiazole (I) with bis methylthio methylene malononitrile in DMF and anhydrous K$_2$CO$_3$. (Scheme 1)

\[
\text{(I) } \xrightarrow{\text{DMF/ Anhy. K}_2\text{CO}_3} \text{One Step Multicomponent reaction} \\
\text{O}_2\text{N} \quad \text{S} \quad \text{N} \quad \text{NH}_2 \\
\text{DMF/ Anhy. K}_2\text{CO}_3 \quad \text{X - H} \quad \text{Second step} \\
\text{O}_2\text{N} \quad \text{S} \quad \text{N} \quad \text{NH}_2 \\
\text{DMF/ Anhy. K}_2\text{CO}_3 \quad \text{First step} \\
\text{O}_2\text{N} \quad \text{S} \quad \text{N} \quad \text{NH}_2 \\
\text{Where, X – H = Substituted aryl amines / phenols / heteryl amines and compounds containing active methylene group.} \\
\text{(Scheme 1)}
\]

In second step, compound- II was heated independently under similar experimental condition with aryl amines / phenols / heteryl amines and compounds containing active methylene group to get respective 2-substituted derivatives. (Scheme 2).

Biological Activity:
All newly synthesized 2-substituted derivatives (IIa-o) were evaluated in-vitro for antibacterial activity against gram positive and gram negative bacterial strain such as *Bacillus subtilis*, *Bacillus Megatenium*, *Escherichia coli* and *Pseudomonas aureginosa* at concentration 100µ/ml by disc diffusion method[24] by using DMSO as solvent control and nutrient agar was employed as culture media. After 24h of incubation at 37°C, the zones of inhibition were measured in mm. The activity was compared with known antibiotic Streptomycin and the data was represented in (Table 1).
Table 1: Antibacterial activity of 2-substituted derivatives (IIa-o)

<table>
<thead>
<tr>
<th>Sample code</th>
<th>B. subtilis 100µ/ml</th>
<th>B. Megatennium 100µ/ml</th>
<th>E. coli 100µ/ml</th>
<th>P. aureginosa 100µ/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIa</td>
<td>11</td>
<td>15</td>
<td>07</td>
<td>10</td>
</tr>
<tr>
<td>IIb</td>
<td>22</td>
<td>27</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>IIc</td>
<td>14</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>IID</td>
<td>21</td>
<td>23</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>IIe</td>
<td>23</td>
<td>22</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>IIf</td>
<td>17</td>
<td>19</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>IIg</td>
<td>26</td>
<td>25</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>IIh</td>
<td>17</td>
<td>11</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>IIi</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>IIj</td>
<td>22</td>
<td>24</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>IIk</td>
<td>13</td>
<td>09</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>31</td>
<td>35</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>DMSO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*Each value is an average of three independent determinations ± Standard deviation.

Note: '-' denotes no activity, 8-12 mm poor activity, 13-17 mm moderate activity, 18-20 mm and above good activity.
CONCLUSION
In conclusion a facile multicomponent and one pot synthesis has been developed for the title compounds using readily available starting materials.
All the 14 newly synthesized compounds were screened for antibacterial activity studies at a concentration of 100µ/ml using DMSO as a control and Streptomycin used as standard against gram positive and gram negative bacteria. The data in the Table 1 indicates that among the synthesized compounds IIb, IId, Ile, IIg, IIi and IIj compounds was found to possess a broad spectrum activity. However, the activities of the tested compounds are much less than those of standard antibacterial agents used.

ACKNOWLEDGEMENT
The authors are thankful to the Dr. N. V. Kalyankar, Principal, Yeshwant Mahavidyalaya, Nanded for providing laboratory facilities and the Director, Indian Institute of Chemical Technology, Hyderabad for providing spectra.

REFERENCES