Research and Reviews: Journal of Pharmacy and Pharmaceutical Sciences

Nanoparticles as Targeted Drug Delivery Systems – A Novel Approach in Cancer Therapy

Pratibha Muntha*

Department of Pharmaceutics, Vignan Institute of pharmaceutical Sciences, Jawaharlal Nehru technological University, Deshmukhi, Nalgonda, Telangana, India, E-mail: pratibha.muntha@gmail.com

Short Commentary

Received: 02/11/2013
Accepted: 21/12/2013
Published: 27/12/2013

*For Correspondence

Department of Pharmaceutics, Vignan Institute of pharmaceutical Sciences, Jawaharlal Nehru technological University, Deshmukhi, Nalgonda Telangana, India, E-mail: pratibha.muntha@gmail.com

Keywords: Nanoparticles, Drug Delivery, Cancer Therapy, Polymers, Targeted

ABSTRACT

Drug delivery is the administration of a therapeutically active substance into the body of the patient using a route of administration which will give maximum therapeutic effect. Targeted drug delivery designs the drug delivery systems in such a way that the dosage form releases the active ingredients in the targeted area which will result in reduced side effects and helps in achieving maximum therapeutic benefit.

Nanoparticles as drug delivery systems are now playing a major role in the area of targeted drug delivery systems especially in the treatment of cancer. Nanoparticles indicate nanostructures with intermediate size between microscopic and molecular structure. Nanoparticles can exist in different shapes of spherical, filamentous, tubular, and irregular. They even have applications in various other fields related to cosmetics, cancer therapy, food additives etc.

INTRODUCTION

Drug delivery is the administration of a therapeutically active substance into the body of the patient using a route of administration which will give maximum therapeutic effect [1].

The major challenges in field of drug delivery are to target the drug at specific site achieving maximum desirable therapeutic gain and safety [2]. Targeted drug delivery designs the drug delivery systems in such a way that the dosage form releases the active ingredients in the targeted area [3] which will result in reduced side effects and helps in achieving maximum therapeutic benefit [4].

ADVANTAGES

Nanoparticulate drug delivery offers enormous advantages [5]
- Reduced toxicity and side effects [6]
- The availability of the drug at the site of action results in increased bioavailability and efficiency of treatment [7]

Nanoparticles are also advantageous for the delivery of poorly water soluble drugs as they improve the uptake of such drugs and increase their bioavailability [8].

Nanoparticles as drug delivery systems are now playing a major role in the area of targeted drug delivery systems. Nanoparticles indicate nanostructures with intermediate size between microscopic and molecular structure [9]. Nanoparticles can exist in different shapes of spherical, filamentous, tubular,
and irregular [10]. They even have applications in various other fields related to cosmetics, cancer therapy [11], food additives etc. [12].

Nanoparticles exhibit the characteristics of crystalline and amorphous nature and adsorb or encapsulate the drug which has to target to a specific site [13].

The various types of nanoparticulate drug delivery systems include Nano-based Drug delivery systems constitutes of a significant portion of nanomedicine which includes drug-polymer conjugates, polymeric nanoparticles, solid-lipid nanoparticles, liposomes, dendrimers and polymer micelles etc. [14]

Oral formulation of insulin using nanoparticulate technology is one of the greatest achievements which has increased patient comfort and compliance among the diabetic patients [15]

POLYMERS

There are several classes of polymers which are used in the formulation of nanoparticles. These polymers help in designing the dosage form in such a way that they release the drug at the targeted site at a predetermined rate and at the targeted site [16].

The various classes of polymers used in the formulation of nanoparticles [17]

1. Polysaccharides – Starch, Chitosan
2. Proteins – Gelatin, Albumin
3. Lipids

NANOPARTICLES & CANCER THERAPY

One of the most widely used approaches to treat cancer is the use of radiation that helps in degenerating the cancerous tissue and prevents the of tumor cells [18]. The use of these radiations can has many side effects on non cancerous tissues as they fail to differentiate between healthy tissues and malignant tissues [19].

Several approaches have been designed in using nanoparticles for targeting cancerous cells during the treatment of cancer.

The intratumoral heterogeneity of cancer cells stands as a hindrance in developing effective treatment agents for cancer [20].

The drugs can be targeted to specific sites using two mechanisms [21]

- Active targeting
- Passive targeting

Approaches using nanoparticles as targeted drug delivery systems in the treatment of cancer

1. Aptamer based nanoparticles in targeting the specific cancerous cells [22]
2. Theranostic Nanoparticles is a very challenging approach which helps in simultaneous MRI imaging of cancer cells and also treating them [23].
3. Thiolated chitosan nanoparticles are currently gaining great importance due to their because of their high mucoadhesiveness and extended drug release properties [24].

CHALLENGES DUE TO NANOPARTICULATE DRUG DELIVERY

Nanoparticulate drug delivery exhibits challenges like increased drug resistance over the treatment and the stability and pharmacokinetic properties of the drugs can be affected [25].
ACKNOWLEDGEMENT

This content of the article is scrutinized and approved by M. Murali and written by Pratibha Muntha

REFERENCES
