Nanotechnology is characterized particularly as developing and energizing innovation at the size of one-billionth of a meter clearing without end the obstructions between the physical science, science and science. Nanotechnology is the outline, portrayal, creation and utilization of structures, gadgets and frameworks by controlling shape and size at nanometer scale \[1, 2\]. There are two major methodologies at nanoscale: "Top-down" means the creation of nanostructures materials by taking mass material and framing it into fancied structure which incorporate advancement of incorporated circuits (ICs). "Base up" methodology alludes to building up nanostructures particle by-molecule or atom by-atom i.e., quantum dabs and nanotubes \[3\]. The nanotechnology stage was really laid by Richard Feynman, a celebrated physicist who gave this thought in his address given at California Institute of Technology called "there is a lot of room at the last", a conviction of numerous specialists in the field of nanotechnology. He exhibited a mechanical vision of scaling down of materials, controlling and controlling at nanoscale called "Nanotechnology" \[4\]. Feynman visualized the innovation to assemble nano-object, iota by-molecule and particle by-atom utilizing tool kit \[5\]. Nanoscale, nanotechnology, nanoengineering and nano-item turned into the current idea of Feynman discourse rather than the terms utilized, for example, little scale, little things and scaling down \[6\]. The expression "Nanotechnology" was initially utilized by Norio Taniguchi, University of Tokyo to depict the capacity to specialist materials at nanoscale \[7 - 9\]. In the 1980s, two developments which empowered the imaging of individual particles or atoms and additionally their control prompted the noteworthy advance in the field of nanotechnology. In 1986, Eric Drexler perceived for driving the nanotechnology where it is today through his addresses and books – "Motors of creation: the advancing time of nanotechnology" and In 1991, Saumio lijima found carbon nanotubes and by 2000, the United States propelled the National Nanotechnology Initiative (NNI-a government visionary exploration and advancement program for nanotechnology) & these cleared path for the advancement in innovative work in the field of nanotechnology.

Impact on Life Sciences

Nanotechnology is a rising innovation which is broadly anticipated that would give specialized arrangements and monetarily fruitful items in different fields of utilization. As of now in the business sector the nanotechnology items accessible yet at the same time it is exceptionally serious fundamental examination field. At the end of the day revelation in nanotechnology suggests progressively affect on life sciences. It alludes to an arrangement of advances that are being connected to various existing commercial enterprises has primarily three covering territories, for example, Nanoelectronics, nanomaterials, nanobiotechnology which discover applications in different fields like gadgets, materials,
environment, metrology, mechanical autonomy, health awareness, data innovation, pharmaceutics, agribusiness, transport and so on.

Nanotechnology – Drug Delivery

There are many potentially valuable prospects in nanotechnology for drug delivery systems. Some of the advantageous areas in which nanotechnology efforts are being made include vaccine adjuvants and delivery systems, nanostructured applications used in orthopaedics and wound management, controlled release drug delivery system, delivery vehicles that enhance circulation and targets of drug and to specific cells, systems that improve the solubility of poorly water soluble drugs. Some types of nanotechnologies being utilized in drug delivery as follows:

- **Polymer nanoparticles** – Polymer medication conjugates are utilized as medication conveyance systems the same number of pharmaceuticals are not dissolvable in water, wastefulness towards particular target site. A percentage of the cases incorporate PEGylated liposomal nanoparticle detailing of GMP-evaluation WHI-P131 showed intense in vivo action shows helpful potential against bosom tumor than chemotherapy medications like paclitaxel, gemcitabine. [Dibirdik I, Yiv S, Qazi S, Uckun FM (2010) In vivo Anti-Cancer Activity of a Liposomal Nanoparticle Construct of Multifunctional Tyrosine Kinase Inhibitor 4-(4'-Hydroxyphenyl)-Amino-6,7-Dimethoxyquinazoline. J Nanomedic Nanotechnolo 1: 1]

- **Quantum dots** – Fluorescent imperceptible nanocrystals measuring around 2-10nm littler than the wavelength of noticeable light made to fluorescence animated by light have scope of wellbeing applications for following the course of helpful medications or setting up circulatory issues in the human body. Illustration incorporate chitosan (N-(2-hydroxy) propyl-3-trimethyl ammonium chitosan chloride, HTCC/CdS quantum nanodots can be possibly utilized as a part of organic applications and naming of biomolecules. [Li Y, Hu M, Qi B, Wang X, Du Y (2011) Preparation and Characterization of Biocompatible Quaternized Chitosan Nanoparticles Encapsulating CdS Quantum Dots. J Biotechnol Biomaterial 1:108.]

- **Vaccines** – nano-vectors may also be used as an alternative to traditional biological vaccine methods. A number of systems have been developed in the UK, especially for influenza. These systems have been very successful, as only a small number of intra-cellular deliveries are needed to trigger the body’s immune system.

- **Nano-fabricated structures for gene/protein expression** – this is an emerging area and it uses a functionalised nano-fabricated surface as a barrier layer to allow molecules out but preventing the entry of macrophages. Initial products are currently in clinical trials [10-30].

Nanotechnology – Diagnostic applications

Nanotechnology amplifies the cutoff points of atomic diagnostics to nanoscale. The significant progressive demonstrative innovation is lab-on-a-chip innovation speedy procedure which obliges less time, little measure of test and dependable for a wide range of investigation. Utilizing nanotechnology, we can orchestrate little chip size analyzer for dissecting specimens without even a moment's pause as opposed to sending examples to the research center inside of couple of minutes. This innovation is at the micrometer scale, and organizations are working progressively towards the improvement of microchip-based expository items that require just nanogram or picolitre-sized specimens. Such a decrease in scale ordinarily offers picks up in proficiency and higher paces of examination and unwavering quality. This empowers numerous "objective" medications to be immediately evaluated and held or disposed of in a small amount of the time regularly taken – and at a small amount of the expense [31-40].

Benefits and Risks of Nanotechnology

Because of expansive range of nanotechnology applications, it has various advantages in both created and creating nations like change on transport frameworks, less expensive and clean vitality,
clean drinking water because of nanofilters that can capture living beings and poisons, enhanced social insurance framework by creation of gadgets and medication conveyance frameworks for conclusion, checking and treatment of horrendous ailments, clean environment by evacuation of toxins through remediation, making of new items and change of existing items at nanoscale and so forth which clears the modern upheaval that may change each part of human life. Inspite of the potential uses of nanotechnology, it has a few dangers incorporate nanoparticles, for example, copper, cobalt and so forth have incendiary and harmful impacts on human cells, substance weapons created from nanoparticles are more fatal than the present ones utilized as a part of military, carbon nanotubes – cytotoxic in nature impel granulomas in lungs of research facility creatures. Because of gigantic applications and advantages of nanotechnology in different fields, moral, social and wellbeing studies ought to demonstrate how to amplify the advantages and decrease the dangers [41-48].

REFERENCES

