
ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3408

 Radix-2 CORDIC Method with Constant

Scale Factor

 J. M. Rudagi
1
, Vinayak Dalavi

2

Associate Professor, Dept of ECE, KLEDRMSSCET, Belgaum, Karnataka, India
 1

PG Student [VLSI], Dept of ECE, KLEDRMSSCET, Belgaum, Karnataka, India
 2

ABSTRACT: There are various simple hardware-efficient algorithms exist which can be used to increase speed while

performing the desired signal processing tasks. One such simple and hardware-efficient algorithm is CORDIC which

uses only Shift-and-Add arithmetic with table Look-Up to implement different functions. It can be used to efficiently

implement Trigonometric and other functions. In this paper we present the conventional unrolled CORDIC

architecture. The processor is designed using Verilog HDL using a structured coding method, simulated using ISIM

simulator and implemented using Xilinx 14.2 FPGA synthesis Tool for 16 and 32 bit conventional radix-2 CORDIC

architectures. The output of the CORDIC architectures are analyzed and verified, and compared with the actual values

obtained from MATLAB.

 Keywords: CORDIC, Cosine, Sine, Unrolled Architecture, Verilog

I.INTRODUCTION

Most of the engineers tasked with implementing a mathematical function such as sine, cosine or square root within an

FPGA may initially think of doing so by means of a lookup table (LUT), possibly combined with linear interpolation or

a power series if multipliers are available. LUTs are the fastest way to make the computation; but the precision of the

result is directly related to size of the look-up table. The use of power series is slow to converge to a desired precision.
In effect, the look-up table size is being traded off at the expense of computation time.

CORDIC [1], [2], [3] method for calculating these elementary functions, is a compromise between the two methods

described above wherein the precision is preserved without any considerable memory requirement. The use of the

architectures in modern DSP systems [4], [5] requires a rapid increase in performance accompanied by a decrease in

cost and time-to market. Higher performance is achieved by optimizing these structures for improved timing behaviour

and low power consumption. FPGA provides the hardware environment in which dedicated processors can be tested for

their functionality. They perform various high-speed operations that cannot be realized by a simple microprocessor.

The primary advantage that FPGA offers is On-site programmability. Thus, it forms the ideal platform to implement

and test the functional of a dedicated processor designed using CORDIC algorithm.

The rest of the paper is organized in the following manner. CORDIC algorithm and its operating modes are discussed

in section 2. Section 3 describes the unrolled architecture of the CORDIC algorithm. Section 4 describes the result and

related comparison.

II. CORDIC ALGORITHM

The COordinate Rotation DIgital Computer (CORDIC) is known as an iterative algorithm using only shift-and-add

operations to perform several mathematic functions for scientific and engineering fields. CORDIC was firstly described

in 1959 by J.E. Volder [1] to evaluate trigonometric functions. In 1971, J. Walther [2] extended the CORDIC algorithm

to hyperbolic functions and the algorithm is today used in many application areas such as matrix computation, digital

signal processing, digital image processing, communication, robotics and graphics. The trigonometric and exponential

functions that are evaluated via rotations in the circular, hyperbolic and linear coordinate systems. Their inverses can be

implemented in a ―vectoring‖ mode in the appropriate coordinate system.

Rotating a vector in a Cartesian plane by the angle θ this can be arranged so that

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3409

x’= cos θ [x - y tan θ] (1)

y’= cos θ [y + x tan θ] (2)

If the rotation angles are restricted so that tan (θ) = ± 2
-i
, the multiplication by the tangent term is reduced to a simple

shift operation. Arbitrary angles of rotation are obtainable by performing a series of successively smaller elementary

rotations. If the decision at each iterations i, is which direction to relate rather than whether or not to rotate, then the

cos(θ) term becomes a constant .The iterative rotation can now be expressed as:

xi+1 = Ki [xi + di . 2
−i

 . yi] (3)

yi+1 = Ki [yi − di . 2
−i

 . xi] (4)

Where,

Ki = 1/(1+2
-2i

)
1/2

; known as scale constant.

di = ±1; known as decision function.

Removing the scaling constant from the iterative equations yields a shift-add algorithm for vector rotation. The product

of the K can be applied elsewhere in the system or treated as part of a system processing gain or by initiating the

rotating vector by the reciprocal of the gain of a certain number of iterations. The angle of a composite rotation is

uniquely defined by the sequence of the directions of the elementary rotations. That sequence can be represented by a

decision vector. The set of all possible decision vectors is an angular measurement system based on binary arctangents.

A better conversion method uses an additional adder-subtractor that accumulates the elementary rotation angles at each

single iteration. The elementary angles can be expressed in any convenient angular unit. Those angular values are

supplied by a small lookup table or are hardwired, depending on the implementation. The angle accumulator adds a

third difference equation to the CORDIC algorithm

zi+1 = zi - di . tan
-1

(2
−i

) (5)

The CORDIC rotator is normally operated in one of two modes, the rotation mode and the vectoring mode [4]. In the

rotation mode, a vector (x, y) is rotated by an angle θ. The angle accumulator is initialized with the desired rotation

angle θ. The rotation decision per iteration is made to diminish the magnitude of the residual angle in the angle

accumulator. The decision per is therefore based on the sign of the residual angle after each step. Naturally, if the input

angle is already expressed in the binary arctangent base, the angle accumulator may be eliminated.

For rotation mode the CORDIC equations are

Xi+1=Xi-Yi.di.2
-i

(6)

Yi+1=Yi+Xi.di.2
-I

(7)

Zi+1=Zi-di.tan
-1

(2
-i
) (8)

Where di=-1 if Zi<0, else di=+1

The CORDIC rotator rotates the input vector through whatever angle is necessary to align the result vector with the x-

axis. The result of the vectoring operation is a rotation angle and the scaled magnitude of the original vector. The

vectoring function works by seeking to minimize the y component of the residual vector at each rotation. The sign of

the residual y component is used to determine which direction to rotate next. If the angle accumulator is initialized with

zero, it will contain the traversed angle at the end of the iterations.

The CORDIC equations are:

Xi+1=Xi-Yi.di.2
-i

Yi+1=Yi+Xi.di.2
-i

Zi+1=Zi-di.tan
-1

(2
-i
)

Where di=-1 if Zi<0, else di=+1

After n iterations we get the following results:

 Xn=An[X0cosZ0- Y0sinZ0] (9)

Yn=An[Y0cosZ0-+X0sinZ0] (10)

Zn=0 (11)

An = (1 + 2−2i)𝑛
𝑖=0 (12)

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3410

III. UNROLLED CORDIC ARCHITECTURE

Fig. 1: Unrolled CORDIC Architecture

An unrolled architecture is shown in fig.1.Unrolled architecture has two advantages. First one is that the shifters are of

fixed size and those can be implemented in the wiring. Second, Constants can be hardwired instead of requiring storage

space that is the ROM that holds the arbitrary angle values need not to be updated after every iteration. The look up

table (LUT) values for computing angle accumulator is distributed as constant to each adder in the angle accumulator

chain so that the entire CORDIC processor is reduced to an array of interconnected adder-subtraction units. Unlike

other architectures there is no need of registers which makes the unrolled architecture strictly combinational circuit. It

has considerable delay, but processing time is reduced as compared to the iterative process. So the unrolled

implementation provides the speed required for faster applications

.

The various components required for the radix-2 CORDIC processor implementation in unrolled fashion are the ROM

required to store the angle values tan
-1

(i) where i is varied from 0 to 16 and 32 for 16 bit and 32 bit processor

respectively. There are barrel shifter required for shifting of the intermediate values of Xi and Yi. The barrel shifters

carry out a right shift which can be implemented using multiplexers. Adder/Subtraction unit is required in each iteration

to calculate the next iteration values of X, Y and Z. The counter is required for the counting of the number of iteration

of the CORDIC equations.

IV. IMPLEMENTATION AND RESULTS

The CORDIC processor is implemented with the following synthesis description:

Platform: FPGA

Family: Vertex6

Target device: XC6VCX75t

Package: FF484

Speed grade: -2

Fig. 2 and fig. 3, shows RTL schematics of the 16 & 32 bit CORDIC structure.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3411

Fig.2 RTL Schematic of unrolled 16 bit CORDIC processor

Fig.3 RTL Schematic of unrolled 32 bit CORDIC processor

Fig. 4 and fig.5, shows RTL simulation results of the 16 & 32 bit CORDIC structure.

Fig.4: Simulation result that calculate cosine and sine for angle 30

0
for 16 bit world length.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3412

Fig.5: Simulation result that calculate cosine and sine for angle 30
0
for 32 bit world length.

TABLE I: device utilization summary for an input word length of 16 and 32bits.

Parameter CORDIC structure

16 bit 32 bit

Number of Slice registers 1 1

Number of Slice LUTs 965 4104

Number of 4 input LUTs 1235 5441

Number of IOs 98 194

Number of bonded IOBs 98 194

No. of BUFG/BUFGCTRLs 1 1

TABLE II: Timing Behavior for 16 and 32 Bit Word Lengths

Parameter CORDIC structure

16 bit 32 bit

Minimum input arrival time

before clock

0.707ns 0.707ns

Maximum output required

time after clock

45.278ns 165.979ns

Maximum combinational path

delay

45.085ns 169.947ns

Fig.6: Power analysis report.

V. CONCLUSION

The CORDIC is a widely used algorithm in the field of DSP applications. This affects the cost, speed and flexibility of

the DSP systems. Implementation of a CORDIC based processor on FPGAs can give enhanced speed at low cost with a

lot of flexibility.

http://www.ijareeie.com/

ISSN (Print) : 2320 – 3765

ISSN (Online): 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 3413

In this project 16 and 32 bit radix-2 CORDIC architectures are designed and simulated using Xilinx ISE using

VERILOG as a synthesis tool. The output of the CORDIC architectures are analysed and verified, and compared with

the actual values obtained from MATLAB. It is proved that by making use of CORDIC processor we can achieve high

speed operation at reduced power and resource usage, which is essential in DSP applications. The analysis was carried

for radix-2 CORDIC.

REFERENCES

[1] J.E. Volder, ―The cordic trigonometric computing technique‖, IRE Trans Electronic Computers vol. 8, pp. 330–334, 1959.

[2] J.S. Walther, ―A unified algorithm for elementary functions‖, in: Proceedings of spring. Joint Computer Conference, pp. 379–385, 1971.

[3] Pramod K. Meher et. Al ―50 Years of CORDIC: Algorithms, Architectures, and Applications‖ IEEE transactions on circuits and systems—I:
regular papers, vol. 56, no. 9, pp 1893-1907, September 2009.

[4] Andraka, R.,―A survey of CORDIC algorithms for FPGA based computers‖, FPGA ’98, in ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, pp. 191- 200, 1998.
[5] Takafumi et al., ―High Radix CORDIC algorithm for VLSI signal processing‖, in: IEEE Workshop on Signal Processing Systems (SIPS), pp.

183–192, November 1997.

BIOGRAPHY

J. M. Rudagi received the B.E. degree in Electrical Engineering from the Karnataka University ,Dharwad, India, in

1991 and M. Tech in Digital Electronics and Advanced Communication from Manipal University, Manipal,India. She

is currently working as a Associate professor in KLE Dr.MSSCET,Belgaum. She has 22 years of teaching experience.

Her research interest are in low power VLSI design.

Vinayak Dalavi received the B.E. degree in Electronics and Communications Engineering from the Visvesvaraya

Technological University ,Belgaum, India, in 2008, He is currently pursuing M. Tech degree in VLSI design and

Embedded Systems from Visvesvaraya Technological University. His research interests are VLSI design and

embedded systems.

http://www.ijareeie.com/

