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ABSTRACT: There are various simple hardware-efficient algorithms exist which can be used to increase speed while 

performing the desired signal processing tasks. One such simple and hardware-efficient algorithm is CORDIC which 

uses only Shift-and-Add arithmetic with table Look-Up to implement different functions. It can be used to efficiently 

implement Trigonometric and other functions. In this paper we present the conventional unrolled CORDIC 

architecture. The processor is designed using Verilog HDL using a structured coding method, simulated using ISIM 

simulator and implemented using Xilinx 14.2 FPGA synthesis Tool for 16 and 32 bit conventional radix-2 CORDIC 

architectures. The output of the CORDIC architectures are analyzed and verified, and compared with the actual values 

obtained from MATLAB. 
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I.INTRODUCTION 

Most of the engineers tasked with implementing a mathematical function such as sine, cosine or square root within an 

FPGA may initially think of doing so by means of a lookup table (LUT), possibly combined with linear interpolation or 

a power series if multipliers are available. LUTs are the fastest way to make the computation; but the precision of the 

result is directly related to size of the look-up table. The use of power series is slow to converge to a desired precision. 
In effect, the look-up table size is being traded off at the expense of computation time. 

 

CORDIC [1], [2], [3] method for calculating these elementary functions, is a compromise between the two methods 

described above wherein the precision is preserved without any considerable memory requirement. The use of the 

architectures in modern DSP systems [4], [5] requires a rapid increase in performance accompanied by a decrease in 

cost and time-to market. Higher performance is achieved by optimizing these structures for improved timing behaviour 

and low power consumption. FPGA provides the hardware environment in which dedicated processors can be tested for 

their functionality. They perform various high-speed operations that cannot be realized by a simple microprocessor. 

The primary advantage that FPGA offers is On-site programmability. Thus, it forms the ideal platform to implement 

and test the functional of a dedicated processor designed using CORDIC algorithm. 

 

The rest of the paper is organized in the following manner. CORDIC algorithm and its operating modes are discussed 

in section 2. Section 3 describes the unrolled architecture of the CORDIC algorithm. Section 4 describes the result and 

related comparison. 

 

II. CORDIC ALGORITHM 

The COordinate Rotation DIgital Computer (CORDIC) is known as an iterative algorithm using only shift-and-add 

operations to perform several mathematic functions for scientific and engineering fields. CORDIC was firstly described 

in 1959 by J.E. Volder [1] to evaluate trigonometric functions. In 1971, J. Walther [2] extended the CORDIC algorithm 

to hyperbolic functions and the algorithm is today used in many application areas such as matrix computation, digital 

signal processing, digital image processing, communication, robotics and graphics. The trigonometric and exponential 

functions that are evaluated via rotations in the circular, hyperbolic and linear coordinate systems. Their inverses can be 

implemented in a ―vectoring‖ mode in the appropriate coordinate system.  

Rotating a vector in a Cartesian plane by the angle θ this can be arranged so that 
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x’= cos θ [ x - y tan θ ]     (1) 

y’= cos θ [ y + x tan θ ]     (2) 

 

If the rotation angles are restricted so that tan (θ) = ± 2
-i
, the multiplication by the tangent term is reduced to a simple 

shift operation. Arbitrary angles of rotation are obtainable by performing a series of successively smaller elementary 

rotations. If the decision at each iterations i, is which direction to relate rather than whether or not to rotate, then the 

cos(θ) term becomes a constant .The iterative rotation can now be expressed as: 

 

xi+1 = Ki [ xi + di . 2
−i

 . yi ]                 (3) 

yi+1 = Ki [yi − di . 2
−i

 . xi]                 (4) 

 

Where, 

Ki = 1/(1+2
-2i

)
1/2

; known as scale constant. 

di = ±1; known as decision function. 

 

Removing the scaling constant from the iterative equations yields a shift-add algorithm for vector rotation. The product 

of the K can be applied elsewhere in the system or treated as part of a system processing gain or by initiating the 

rotating vector by the reciprocal of the gain of a certain number of iterations. The angle of a composite rotation is 

uniquely defined by the sequence of the directions of the elementary rotations. That sequence can be represented by a 

decision vector. The set of all possible decision vectors is an angular measurement system based on binary arctangents. 

A better conversion method uses an additional adder-subtractor that accumulates the elementary rotation angles at each 

single iteration. The elementary angles can be expressed in any convenient angular unit. Those angular values are 

supplied by a small lookup table or are hardwired, depending on the implementation. The angle accumulator adds a 

third difference equation to the CORDIC algorithm 

zi+1 = zi - di . tan
-1 

(2
−i

)        (5) 

     

The CORDIC rotator is normally operated in one of two modes, the rotation mode and the vectoring mode [4]. In the 

rotation mode, a vector (x, y) is rotated by an angle θ. The angle accumulator is initialized with the desired rotation 

angle θ. The rotation decision per iteration is made to diminish the magnitude of the residual angle in the angle 

accumulator. The decision per is therefore based on the sign of the residual angle after each step. Naturally, if the input 

angle is already expressed in the binary arctangent base, the angle accumulator may be eliminated. 

 

For rotation mode the CORDIC equations are 

 

Xi+1=Xi-Yi.di.2
-i      

(6)
 

Yi+1=Yi+Xi.di.2
-I     

(7) 

Zi+1=Zi-di.tan
-1

(2
-i
)       (8) 

Where di=-1 if Zi<0, else di=+1 

 

The CORDIC rotator rotates the input vector through whatever angle is necessary to align the result vector with the x-

axis. The result of the vectoring operation is a rotation angle and the scaled magnitude of the original vector. The 

vectoring function works by seeking to minimize the y component of the residual vector at each rotation. The sign of 

the residual y component is used to determine which direction to rotate next. If the angle accumulator is initialized with 

zero, it will contain the traversed angle at the end of the iterations. 

 

The CORDIC equations are: 

 

Xi+1=Xi-Yi.di.2
-i 

Yi+1=Yi+Xi.di.2
-i 

Zi+1=Zi-di.tan
-1

(2
-i
) 

Where di=-1 if Zi<0, else di=+1 

 

After n iterations we get the following results: 

             Xn=An[X0cosZ0- Y0sinZ0]       (9) 

Yn=An[Y0cosZ0-+X0sinZ0]     (10) 

Zn=0      (11) 

An =   (1 + 2−2i)𝑛
𝑖=0           (12) 
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III. UNROLLED CORDIC ARCHITECTURE 

 
Fig. 1: Unrolled CORDIC Architecture 

 

An unrolled architecture is shown in fig.1.Unrolled architecture has two advantages. First one is that the shifters are of 

fixed size and those can be implemented in the wiring. Second, Constants can be hardwired instead of requiring storage 

space that is the ROM that holds the arbitrary angle values need not to be updated after every iteration. The look up 

table (LUT) values for computing angle accumulator is distributed as constant to each adder in the angle accumulator 

chain so that the entire CORDIC processor is reduced to an array of interconnected adder-subtraction units. Unlike 

other architectures there is no need of registers which makes the unrolled architecture strictly combinational circuit. It 

has considerable delay, but processing time is reduced as compared to the iterative process. So the unrolled 

implementation provides the speed required for faster applications 

. 

The various components required for the radix-2 CORDIC processor implementation in unrolled fashion are the ROM 

required to store the angle values tan
-1

(i) where i is varied from 0 to 16 and 32 for 16 bit and 32 bit processor 

respectively. There are barrel shifter required for shifting of the intermediate values of Xi and Yi. The barrel shifters 

carry out a right shift which can be implemented using multiplexers. Adder/Subtraction unit is required in each iteration 

to calculate the next iteration values of X, Y and Z. The counter is required for the counting of the number of iteration 

of the CORDIC equations. 

IV. IMPLEMENTATION AND RESULTS 

 

The CORDIC processor is implemented with the following synthesis description: 

Platform: FPGA 

Family: Vertex6 

Target device: XC6VCX75t 

Package: FF484 

Speed grade: -2 

 

Fig. 2 and fig. 3, shows RTL schematics of the 16 & 32 bit CORDIC structure. 
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Fig.2 RTL Schematic of unrolled 16 bit CORDIC processor 

 

 
 

Fig.3 RTL Schematic of unrolled 32 bit CORDIC processor 

 

Fig. 4 and fig.5, shows RTL simulation results of the 16 & 32 bit CORDIC structure. 

 

 
Fig.4: Simulation result that calculate cosine and sine for angle 30

0 
for 16 bit world length. 
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Fig.5: Simulation result that calculate cosine and sine for angle 30
0 
for 32 bit world length. 

 

TABLE I: device utilization summary for an input word length of 16 and 32bits. 

Parameter CORDIC structure 

16 bit 32 bit 

Number of Slice registers 1 1 

Number of Slice LUTs 965 4104 

Number of 4 input LUTs 1235 5441 

Number of IOs 98 194 

Number of bonded IOBs 98 194 

No. of BUFG/BUFGCTRLs 1 1 

 

TABLE II: Timing Behavior for 16 and 32 Bit Word Lengths 

Parameter CORDIC structure 

16 bit 32 bit 

Minimum input arrival time 

before clock 

0.707ns 0.707ns 

Maximum output required 

time after clock 

45.278ns 165.979ns 

Maximum combinational path 

delay 

45.085ns 169.947ns 

 

 
Fig.6: Power analysis report. 

 

V. CONCLUSION 

The CORDIC is a widely used algorithm in the field of DSP applications. This affects the cost, speed and flexibility of 

the DSP systems. Implementation of a CORDIC based processor on FPGAs can give enhanced speed at low cost with a 

lot of flexibility.  
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In this project 16 and 32 bit radix-2 CORDIC architectures are designed and simulated using Xilinx ISE using 

VERILOG as a synthesis tool. The output of the CORDIC architectures are analysed and verified, and compared with 

the actual values obtained from MATLAB. It is proved that by making use of CORDIC processor we can achieve high 

speed operation at reduced power and resource usage, which is essential in DSP applications. The analysis was carried 

for radix-2 CORDIC.                 
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