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ABSTRACT: Gene regulation refers to a number of sequential processes,   the   most   well-known   and   understood   
being translation and  transcription,  which  control  the  level  of  a gene’s expression and ultimately result with 
specific quantity of a target protein. Reconstruction of gene regulatory networks is a process of analyzing the steps 
involved in gene regulation using computational techniques. In this paper, cancer-specific gene regulatory network 
has been reconstructed using information theoretic approach-Mutual Information. The microarray database used 
contains 12 Gene samples each of breast cancer and prostate cancer having both normal and tumor cell information. 
This data has been preprocessed, normalized and filtered using the t-test; the MI value is applied on the filtered genes 
to determine the Gene-Gene Interaction. Based on the interactions obtained, 10 different networks have been   
constructed   and   the   statistical   analysis   has   been performed on that network. Finally, validation of the inferred 
results has been done with available biological databases and literature. 
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I. INTRODUCTION 
 
Malignant cancer is one of the most widespread diseases in today’s world that affects the mortality rate of human 
beings. The cancerous cells divide and grow in an uncontrollable manner forming tumors and infest the nearby part of 
body. Various significant genes are responsible for the genesis of different tumors. Radiotherapy, chemotherapy and 
surgery are the possible ways of treating cancer. Therefore, identification of genes that lead to cancer can typically 
solve the uncontrollable growth of cancer at an early stage. 
 
Reconstruction of g e n e  r e g u l a t o r y  n et wor ks  ( GRNs) explicitly represents the causality of developmental or 
regulatory process. It has become a challenging computational problem for understanding the complex regulatory 
mechanisms in cellular systems. An important problem in molecular biology is to identify and understand the gene 
regulatory networks (GRNs). Microarray technologies have produced tremendous amounts of gene expression data, 
which provide opportunity for understanding the underlying regulatory mechanism. 
 
Recently, information theoretic approaches are increasingly being used for reconstructing GRNs. Several mutual 
information based methods have been successfully applied   to   infer   GRNs   and   minet.   In   general,   these 
approaches start by computing the pair-wise MIs between all possible pairs of genes, resulting in an MI matrix. The 
MI matrix is then manipulated to identify the regulatory relationships. MI provides a natural generalization of the 
correlation since it measures non-linear dependency and therefore attracts much attention. Another advantage of these 
methods is their ability to deal with thousands of variables (genes) in the presence of a limited number of samples. 
With these advantages, MI-based methods only work when investigating pair-wise regulations in a GRN. The 
inference of gene networks from high-throughput data is a very complex and vastly expanding; triggered by the 
invention of measurement technologies. In order to provide a systematic discussion of the underlying principles we 
limit this review to observational steady-state gene expression data and consider correlation-and mutual information-
based inference methods.  These methods are representative of linear and non-linear methods. Principally, there are 
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three fundamental levels of a molecular system as given by the central dogma of molecular biology (Crick, 1970), 
namely, the DNA, mRNA and the protein level. Figure 1 shows the overview of Central Dogma. The central dogma 
of molecular biology describes the two-step process, transcription and translation by which the information in genes 
flows into proteins: 
DNA->RNA->Protein 
 

 
Figure 1: Central Dogma 

 
In this work, we propose a relevance network model for gene regulatory network inference which employs mutual 
information to determine the interactions between genes. For this purpose, we propose a mutual information estimator 
based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We 
provide experimental results that demonstrate that the proposed regulatory network inference algorithm finds the high 
degree genes and predicts the gene responsible for both breast cancer and prostate cancer. The results are validated 
using biological database. 
 

II. LITERATURE SURVEY 
 

The reconstruction or ‘reverse engineering’ of GRNs, which aims to find the  underlying network of gene–gene 
interactions from the measurement of gene expression is considered one of most important goals in systems biology 
[2,3]. For this, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) program was established 
to encourage researchers to develop new efficient computation methods to infer robust GRNs [4]. A variety of 
approaches have been proposed to infer GRNs from gene expression data [5,7], such as discrete models of Boolean 
networks and Bayesian networks[8], differential equations [9-12], regression method[13,14] and linear programming 
[15]. Although many popular network inference algorithms have been investigated [16, 5], there are still a large 
space for   current   models   to   be   improved   [20].   Recently, information-theoretic approaches are increasingly 
being used for reconstructing GRNs. Several mutual information (MI)- based  methods  have  been  successfully  
applied  to  infer GRNs,  such as  ARACNE, CLR  [23]  and  minet [21]. In general, these approaches start by 
computing the pair-wise MIs between all possible pairs of genes, resulting in an MI matrix. The MI matrix is then 
manipulated to identify the regulatory relationships. MI provides a natural generalization of the correlation since it 
measures non-linear dependency (which is common in biology) and therefore attracts much attention. Another 
advantage of these methods is their ability to deal with thousands of variables (genes) in the presence of a limited 
number of samples. Despite these advantages, MI- based methods only work when investigating pair-wise regulations 
in a GRN. 
 

III. ABBREVIATIONS 
 
DNA: Deoxyribo nucleic acid RNA: Ribonucleic acid NCBI: National center for Biotechnology Information GEO: 
Gene expression omnibus TMI: Threshold Mutual Information Microarray: Collection of microscopic DNA spots 
attached to solid surface. MI: Mutual Information. GRN: Gene Regulatory Network. 
 

IV. DATASET DESCRIPTION 
 
Evaluation of  t h e  performance of our approach is experimentally tested on the Reactive stroma of breast and 
prostate cancer dataset. The full data set can be downloaded from the Gene Expression Omnibus website: 
http://www.ncbi.nlm.nih.gov/geo/GSE26910. The   dataset has   information   on   54675   genes   under   24   
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different experimental conditions. 
 

V. METHODOLOGY 
 
The algorithm presented in this approach is shown in Figure 2. 
 

 
 

              Figure 2: System Flow chart 
 

A.   Preprocessing and Normalization 
The dataset is quite large with 54675 genes and a lot of information corresponds to genes that do not show any 
interesting changes during the experiment. During the pre- processing, genes that do not show any changes during the 
experiment are removed which reduces the size of the dataset. If we look through the gene list, we have several spots 
marked as ‘EMPTY’. These are empty spots on the array and these spots can be noise. The function isnan() is used to 
identify the genes with missing data and indexing commands are used to remove the genes with missing data. 
 
B.   Filtering 
T-test is applied between the normal and tumor cell data to obtain the most significant genes. The t-test for unpaired 
data and both for equal and unequal variance can be computed as 

                         (1)
 

where x1  and x2  are the means S1  and S2  are variances and N1 and N2 are sizes of two groups of samples-tumor 
and normal. The threshold p-value is set at 0.01. This further reduces the size of the dataset to 1017 genes. 
 
C.   Gene-Gene Interaction 
MI   is   generally used   as   a   powerful criterion   for measuring the dependence between two variables (genes) X 
and Y. For gene expression data, variable X is a vector, in which the elements denote its expression values in different 
conditions (samples). For a discrete variable (gene) X, the entropy H(X) is the measure of average uncertainty of 
variable X. 

                                               (2) 



   

                     ISSN(Online): 2320-9801 
                     ISSN (Print):  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol.2, Special Issue 5, October 2014 

Copyright to IJIRCCE                                                                           www.ijircce.com                                                                   306 

     

 

Where p(x) is the probability of each discrete value x in X. The joint entropy H(X, Y) of X and Y can be denoted by 
 

                                       (3) 
Where p(x, y) is the joint probability of x in X and y in Y. MI measures the dependency between two variables. For 
discrete variables X and Y, MI is defined as 
 

   (4) 
MI can also be defined in terms of entropies as 

   (5) 
Where H(X, Y) is joint entropy of X and Y. High MI value indicates that there may be a close relationship between 
the variables (genes), while low MI values imply their independence. 
 
Mutual information therefore measures dependence in the following sense: I(X; Y) = 0 if and only if X and Y are 
independent random variables. This is easy to see in one direction: if X and Y are independent, then p(x,y) = p(x) p(y), 
and therefore: 
 

    (6) 
 
Moreover,   mutual   information   is   nonnegative   (i.e. I(X;Y) ≥ 0) and symmetric (i.e. I(X;Y) = I(Y;X)). Mutual 
Information approach is used to obtain regulatory interactions between the selected significant gene pairs. The TMI 
value is set at 3.4. The gene relationships with F value greater than TMI are said to interact with each other. The gene 
numbers which interact with each other are obtained. 
 
D.   Mapping 
The gene interaction matrix obtained in the previous step is mapped onto the gene names. 
 
E.   Gene Regulatory Network 
The result of gene-gene interaction matrix is imported into the network visualization and analysis tool, Cytoscape. 
Cytoscape is more powerful when used in conjunction with large databases of protein-protein, protein-DNA and 
genetic interactions that are increasingly available for humans and model organisms. It allows the visual integration of 
the network with expression profiles, phenotypes and other molecular state information and links the network to 
databases of functional annotations. The interacting genes are selected to obtain networks of interacting genes.  This 
helps us in easily identifying the genes with highest degree. Such genes, called as highly connected genes, are said to 
have a higher impact in causing cancer. 
 
F.   Identify prognostic molecular markers 
The highly connected genes are used in the identification of the prognostic molecular markers. This analysis is done 
using. This analysis is done using G2SBC (Genes-to-Systems Breast Cancer Database) .The G2SBC is a bioinformatics 
resource that collects and integrates data about genes. From this analysis it is found that the genes GOLM1, CSMD2, 
MICAL2, TMEM167A, TBC1D2, POSTN, AEBP1, ZNF668, ZFAND3, TXNL1, VOPP1, TRIP13 are common for 
causing both breast and prostate cancer [22]. 
 

VI. EXPERIMENTS AND RESULTS 
 
Experiments were conducted on the reactive stroma of breast and prostate cancer with 54675 genes under 24 different 
experimental conditions. Regulatory network for 30 genes with 306 interactions is shown in the Figure 3. Statistical 
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analysis of GRN for 30 genes is shown in table 1. 

 
 

Figure 3: Network for 30 genes with 306 interactions 
 

 
 

Table 1: Network statistics 
 
1.  Neighborhood Connectivity:  The connectivity of a node is the number of its neighbors. The neighborhood 
connectivity of a node n is defined as the average connectivity of all neighbors of n, Figure 4. The neighborhood 
connectivity distribution gives the average of the  neighborhood  connectivity  of  all  nodes  n  with  k neighbors for k 
= 0,1,…. 
 
 

 
 

Figure 4: Neighborhood connectivity 
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2. Closeness centrality: It is the degree to which this node is close to all nodes. Figure 5, shows the closeness centrality 
plotted against number of neighbors. It is calculated ba sed  on  sh or t e s t  pa th s, i t  i s  g i ve n  b y, 
 
Cc(v) =                     ,   where s(v, t) is the shortest path between v and t. 

 
 

Figure 5: Closeness centrality 
 
3. Shared Neighborhood Distribution: P(n, m) is the number of partners shared between the nodes n and m, that is, 
nodes that are neighbors of both n and m. Figure 6 shows  the  shared  neighbors distribution for  the  given number of 
node pairs (n,m) with P(n,m) = k for k = 1,…. 

 
 

Figure 6: Shared neighbor distribution 
 
4. Shortest Path Distribution: Figure 7  shows the shortest path distribution. The length of the shortest path between 
two nodes n and m is L(n,m). The shortest path length distribution gives the number of node pairs (n,m) with L(n,m) = 
k for k = 1,2,…. 
 

 
 

Figure 7:  Shortest path-length distribution 
 

VII. CONCLUSION 
 
In this work, a novel approach comprising the features viz, filtering function, mutual information and gene-gene 
interaction function   have been used on the cancer data to compute regulatory relationship between gene pairs and 
statistical analysis of reconstructed network. The microarray data considered here consists of 54675 genes having 12 
sets each  of  breast  and  prostate  cancer  data  and  12  each  of normal cell data. Our study yields 6 major outcomes; 
first we identify differentially expressed genes in dataset, second, the interactions between differentially expressed gene 



   

                     ISSN(Online): 2320-9801 
                     ISSN (Print):  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol.2, Special Issue 5, October 2014 

Copyright to IJIRCCE                                                                           www.ijircce.com                                                                   309 

     

have been identified; third, genes regulating most of the other genes were identified; fourth, provides the statistical 
analysis of reconstructed network revealed  a  large  number  of interactions in the used data; fifth, provides the 
highly connected gene for 10 different network and sixth, helps to identify the  prognostic molecular markers in  the  
reactive stroma of breast and prostate cancer using G2SBC. From this analysis it is found that the genes GOLM1, 
CSMD2, MICAL2, TMEM167A, TBC1D2, POSTN, AEBP1, ZNF668, ZFAND3, TXNL1, VOPP1, TRIP13 are 
common for causing both breast and prostate cancer. The result provides an excelled understanding of the interaction 
mechanism of the breast and prostate cancer data and provides new insight into the biomedical world. 
 

NETWORK 
NO. 

NO. 
GENES 

OF NO. 
INTERACTION

OF TOP    FIVE    GENES    WITH    
HIGHEST DEGREE 

ANALYSIS 
TIME(sec) 

     CLDN23(7),GOLM1(7),  
Network 1 10  44  CSMD2(6),RNFT2(6),MICAL2(6) 0.095 
     AW190406(15),TMEM167A(14),  
Network 2 20  138  CLDN23(13),MICAL2(13),GOLM1(12

) 
0.271 

     AW190406(23),TMEM167A(23),  
Network 3 30  306  MICAL2(21),TBC1D2(19),GOLM1(19

) 
0.672 

     COMP(37),ITGBL1(36), 
TMEM167A(31), AW190406(30), 

 

Network 4 40  708  MICAL2(29) 0.581 
     COMP(47),ITGBL1(46),  
Network 5 50  1266  CTHRC1(45),ASPN(44),POSTN(44) 1.404 
     AEBP1(57),AI040305(56),  
Network 6 60  1884  ARMC9(55),AW190406(54),ASPN(54) 1.798 
     ZNF668(67),ZFAND3(66),  
Network 7 70  2670  TXNL1(65),VOPP1(65),TNS3(64) 4.349 
     ZFAND3(77),ZNF668(77),  
Network 8 80  3786  VOPP1(76),TNS3(74),TRIP13(74) 6.885 
     COL10A1(87),COMP(87),  
Network 9 90  5178  ITGBL1(86),ASPN(84),COL11A1(84) 14.468 
     COL10A1(97),COMP(97),  
Network 10 100  6774  ITGBL1(96),CTHRC1(94),ASPN(94) 30.139 

 
Table 2: Ten different networks, number of genes involve each, five highly connected genes with their 

                  degrees. 
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