Some Nontrivial Relationships Between A(N+1) & A(N)

Ganesh Vishwas Joshi
Assistant Professor, Department of Mathematics, Maharshi Dayanand College, Parel, Mumbai, India.

ABSTRACT: The trivial relationship known between achromatic indices of K_n & K_{n+1} is $A(n+1)\leq A(n)+n$. In this paper I have obtained some other nontrivial relationship between the numbers $A(n+1)$, $A(n)$.

KEYWORDS: Achromatic Index, Colouring of graphs, Edge colouring, Complete Edge colouring, complete graphs.

I. INTRODUCTION

A k-edge colouring of a simple graph G is assigning k colours to the edges of G so that any two adjacent edges receive different colours. If for each pair t_i & t_j of colours there exist adjacent edges with this colours then the colouring is said to be complete. Let G be a simple graph. The achromatic index $\psi'(G)$ of a simple graph G is the maximum number of colours used in the edge colouring of G such that the colouring is complete. The achromatic index of the complete graph K_n is denoted by $A(n)$. Before going to the derivation of the relationships one requires the following definitions & results.

Definition: Colour-Colour adjacency matrix
Consider proper edge colouring C of a simple graph G with k colours. We define Colour-Colour adjacency matrix C_G with respect to the above colouring as the matrix of order $k \times k$ by $C_G=[c_{ij}]$ where c_{ij} = the number of vertices at which colour i is adjacent to colour j in the colouring C of the graph G.

Definition: Prime adjacency:
Consider achromatic complete edge colouring of K_n. Let C be the colour- colour adjacency matrix with respect to the above colouring. We say that colour i has prime adjacency with the colour j with respect to the above colouring if $c_{ij}=1$.

Definition: spare adjacencies:
If colour i is adjacent to colour j in b vertices where $b>1$ then we say the colour i has b-1 spare adjacencies.
Consider proper edge colouring of the complete graph K_n.
Suppose colour i has q edges in the colouring as shown below.

Now we will count mutually exclusive spare adjacencies at the colour i.
Spare adjacencies to the colour i due to edges incident at V_1 & V_2 are $2(q-1)$ each.
Spare adjacencies to the colour i due to edges incident at V_3 & V_4 are $2(q-2)$ each.
Spare adjacencies to the colour i due to edges incident at V_5 & V_6 are $2(q-3)$ each & so counting on in the similar manner we get the total spare adjacencies of the colour i are $4(q-1)+4(q-2)+\ldots+4(q-(q-1))=2q(q-1)$.

\[\sum_{j=1}^{q-1} 4j = 2q(q-1) \]

\[\text{II. DERIVATION OF THE RELATIONSHIPS} \]

It is known that that $A(8)=14$. If any colour i in the achromatic complete colouring of K_8 has exactly one edge then the number of distinct colours adjacent to the colour i at the extremities of the edge are $6+6=12$. Hence $A(8)\leq 12+1=13$ which contradicts to the fact $A(8)=14$. Hence every colour in the achromatic complete edge colouring of K_8 has at least two edges. Now in the further discussions we always choose $n \geq 9$ as $A(8) < A(n)$. Therefore by arguing similarly as above every colour appearing in the complete achromatic colouring of K_{n+1} has at least two edges in that colouring.

Consider the achromatic complete edge colouring of K_{n+1} with $A(n+1)$ colours say $1, 2, \ldots, A(n+1)$ colours. Let C be the colour colour adjacency matrix with respect to the above colouring. Let each colour i in the colouring has t_i edges in the colouring. Let $k = \min\{ t_i : i=1\to A(n+1) \}$.

Therefore removal of any single vertex V from K_{n+1}, we will remain with proper edge colouring of K_n with $A(n+1)$ colours but the colouring may not be complete & has the at most n colours with exactly $k-1$ edges of each & at least $A(n+1)-n$ colours with at least k edges of each. Therefore due to (*1), minimum number of spare adjacencies in the proper edge colouring of K_{n+1} are $2(k-1)(k-2)n+2(k-1)(A(n+1)-n)=2(k-1)n(k-2)+k(A(n+1)-n)$. Let C' be the colour colour adjacency matrix of proper edge colouring of $K_{n+1}-\{V\}$. The maximum number of prime adjacencies in C' are $n(n-1)(n-2)-2(k-1)n(k-2)+k(A(n+1)-n)$.

\[\sum_{j=1}^{n-1} \sum_{i=1}^{A(n+1)-n} (n(n-1)(n-2)-2(k-1)n(k-2)+k(A(n+1)-n)) \]

\[\text{wlg the colours $A(n+1), A(n+1)-1, A(n+1)-2, \ldots, A(n+1)-(n-1)$ be incident at the vertex V.} \]

The C' matrix is the matrix of order $A(n+1) \times A(n+1)$, we will consider four parts of it as shown below.

The numbers written on the side & above the matrix are representing row & column numbers (&also colours) of C'. Now let’s find maximum number of non diagonal zero cells in the C' matrix. As the colours $1, 2, 3 \ldots, A(n+1)-n$ are not incident at the vertex V, hence removal of the vertex V does not affect mutual adjacencies of the colours involved in the part 1 of the matrix. As the matrix C' is obtained from C, hence there is no non diagonal zero in the above part 1. After removal of the vertex V, adjacencies broken at extremities of each edge of the colours $A(n+1)-(n-1), A(n+1)-(n-2), \ldots, A(n+1)$ are at most $2(n-1)$. \[\vdash \text{part 2 & part 3 together will contain at most } 2(n-1)n \text{ non diagonal zeros.} \]
Any colour from \(A(n+1)-(n-1)\) to \(A(n+1)\) can lose adjacencies with at most \(n-1\) colours at the extremity other than the vertex \(V\). Therefore there can be maximum \(n-1\) zeros in each row of part 4.

\[\therefore \text{The maximum number of non diagonal zeros in the part 4 are } n(n-1) \]

Hence maximum number of non diagonal zeros in the matrix \(C\) are \(2(n-1)n = 3(n-1) \) \((\ast 3)\)

So from \((\ast 2)\) & \((\ast 3)\) we conclude

\[A(n+1) + (n-1)(n-2) - 2(k-1)(n(k-2) + k (A(n+1)-n)) \leq 3(n-1) \]

\[A(n+1)(n-1) - n(n-1) + 2(k-1)(n(k-2) + k (A(n+1)-n)) \leq 3(n-1) \]

\[\text{…………………..(\ast 4)} \]

From the description of \(k\) as discussed above, there exist a colour \(i\) which has exactly \(k\) edges in the achromatic complete edge colouring of \(K_{n+1}\).

The maximum number of colours adjacent to the colour \(i\) can be \(2(n-1)+2(n-3)+\cdots+2(n-2k-1)\)

\[= 2[nk-(1+2+3+\cdots+(2k-1)+(2+4+\cdots(2k-2))] \]

\[= 2[nk-k^2] \]

\[= 2nk-2k^2 \]

\[\therefore 2nk-2k^2 \geq A(n+1)-1 \]

\[2k^2-2nk+(A(n+1)-1) \leq 0 \]

\[:\text{by (\ast 4),} A(n+1) + (A(n+1)-1) - n(n-1) + 2(n-2)(A(n+1)-1)(A(n+1)-2) + \]

\[(n-2)(A(n+1)-1)(A(n+1)-1) \leq 3(n-1) \]

The above result is non-trivial relationship between \(A(n+1)\) & \(A(n)\). We can see that putting \(n=25\) \(k=3\) in the relationship it gives \(A(26) \leq 119\) which is better than the trivial result \(A(26) \leq A(25)+25 = 100+25 = 125\).

Now we will derive another non trivial relationship between \(A(n+1)\) & \(A(n)\). It is obvious that \(A(n+1) \leq n+1\) \(c_2\)

\[\therefore k \leq (n+1)/(2A(n)) \]

\[\therefore k \leq (n(n+1))/(2A(n)) \]

Combining \((\ast 5)\) & \((\ast 6)\) we get \((n-2)(A(n+1)-1)(A(n+1)-2) \leq k \leq (n(n+1))/(2A(n)) \)

\[\text{hence } (n-2)(A(n+1)-1)(A(n+1)-2) \leq (n(n+1))/(2A(n)) \]

\[\therefore (n-2)(A(n+1)-1)(A(n+1)-1) \leq (n(n+1))/(2A(n)) \]

\[\text{The above result is non-trivial relationship between } A(n+1) \text{ & } A(n). \text{ We can see that by putting } n=13 \text{ & } A(n)=39 \text{ in the above result we get } A(14) \leq 50. \text{ Which is better than the trivial } A(14) \leq A(13)+13=39+13=52. \]

III. CONCLUSION

The above relationships may not improve existing bounds of achromatic indices of complete graphs but they may be helpful to extract some more information about achromatic indices.

REFERENCES

[2] V. N. Bhave , on the pseudo-achromatic number of a graph. Fund. Math. 159-164. (1979)

