Spectrofluorimetric Development and Kinetic Validation for the Quantitative Determination of Peroxidase in Pico Molar Quantities: Application in the Detection of Activity in Crude Plant Tissue

Nelligere Arkeswaraiah Chamaraja, 1 Padmarajaiah Nagaraja2, Honnur Krishna3

Research scholar, Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India

Professor, Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India

Research scholar, Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, Karnataka, India

Abstract: A highly sensitive catalytic spectrofluorimetric method for the determination of hydrogen peroxide and peroxidase is presented. This is based on catalytic effect of peroxidase on the oxidation of para-acetylaminophenol, a non-fluorescent compound to fluorescent probe by hydrogen peroxide in slightly basic medium and the reaction mechanism was investigated. The reaction was followed spectrofluorimetrically by measuring the fluorescence intensity of 2, 2'-dihydroxy-5,5'-diacetyldiaminebiphenyl (λex = 325 nm, λem = 439 nm) at a fixed time of 5 minute from initiation of the reaction. Under the optimum conditions, peroxidase can be determined in the range 19-378 pM, With a S.D. = 0.44 for 10 times measurements. The detection limit of the method was down to 0.6995 pM and LOQ value is 2.33 pM. The Michaelis–Menten constant (Km) and Vmax for the reaction was found to be 103 µM and 1000 min⁻¹ respectively. The kinetic parameters like catalytic power \( \left( \frac{V_{\text{H}_2O_2}^{\text{H}_2O_2}}{K_m^{\text{H}_2O_2}} \right) \) and catalytic efficiency \( \left( K_{\text{eff}} = \frac{1}{\text{slope [E]}_0} \right) \) were found to be \( 9.7087 \times 10^6 \text{ M}^1\text{min}^{-1} \) and \( 2.3620 \times 10^9 \text{ M}^{-1}\text{min}^{-1} \) respectively. Applicability of the method was tested for peroxidase activity in some vegetable plant samples.

Key words: Fluorescence, Catalytic power, catalytic efficiency, vegetable samples

I. INTRODUCTION

Peroxidase (E.C. 1.11.1.7) is ubiquitous enzymes that catalyze a variety of enantioselective oxygen-transfer reactions with hydrogen peroxide (H₂O₂) as a substrate [1]. Peroxidase catalysis is associated with a wide variety of reactions like, peroxidic, oxidative, catalytic and hydroxylation in the presence of peroxides such as H₂O₂. Peroxidase reactions can be grouped in to four classes on the basis of the reaction [2], Oxidative dehydrogenation (2 SH + H₂O₂ → 2 S' + 2 H₂O), Oxidative halogenations (SH + H₂O₂ + H (+) + X (-) → SX + 2 H₂O, where X = Cl, Br, I), H₂O₂ dismutation (2 H₂O₂ → 2 H₂O + O₂) and Oxygen-transfer reaction (SH + H₂O₂ → SOH + H₂O). Peroxidase is extensively distributed in nature and can be easily extracted [3] from most plant cells, some animal organs and tissues [4–7]. In plants, they take part in the lignifications process and the mechanism of defense in physically damaged or infected tissues [8]. Peroxidase is ever-present oxidoreductases that use hydrogen peroxide or alkyl peroxides as oxidants [4, 5]. Many biological substances produce H₂O₂ in biochemical reactions catalysed by various bio-enzymes, so they can be determined ultimately by the determination of H₂O₂. In recent years, various methods for H₂O₂ determination have been proposed, including the use of...
enzymatic assays, which has been widely used in analytical biochemistry because of their rapidity and high selectivity. The horseradish peroxidase (HRP) catalysed reaction is one of the most widely used enzymatic reactions in bio analytical chemistry [9–11]. The characteristics of the enzyme were systematically studied with H_{2}O_{2} as oxidizing agent and various substances as fluorogenic substrates [12–21]. Peroxidase catalyses the various organic and inorganic substrates oxidised by one or two electron in the presence of hydrogen peroxide [21]. HRP isozyme [7] as a single chain glyco-hemoprotein, is the most abundant member of the peroxidase family [4]. It folds to an alpha-helical structure having eight helices, while the heme group (Fe (III)-protoporphyrin IX) is sandwiched between two helices. Aromatic substrates bind easily near the heme group at a specified site including Arg 38, Tyr 185, and 8-CH_{3} group of the pyrrole (IV) [22]. For peroxide reduction two electrons are required; one comes from Fe (III) while the other (in HRP) comes from the porphyrin, producing a porphyrin π radical cation [3, 8]. One electron reduction of compound (I) gives compound (II), in which the Fe^{III} species remains together and porphyrin is reduced [4, 23–26]. Peroxidase activity is inherent to many hemoproteins [27], such as cytochrome [28]. Peroxidases have potentially interesting application in diverse fields [5, 29–31]. In waste water treatment the aromatic phenols and amines from aqueous solutions can removed using the peroxidase/peroxide system becomes more and more interesting for biotechnologists [32].

The determination of hydrogen peroxide has always been of interest because of its great importance in clinical biochemistry and also in environmental work. Several studies on the determination of hydrogen peroxide using amperometry, polarography, spectrophotometry, chemiluminescence, etc., have been published [33–37]. The instruments used in these are either very expensive or less versatile. The selectivity of the luminescence is poor. One of the drawbacks of electrochemical sensors is the interference by oxidation or reduction of other compounds at the working potential and also, electro-analytical technique needs several steps to immobilize the enzyme on a solid support, which may reduce the enzyme activity resulting in the waste of expensive biocatalyst, and it is also a time consuming process [38]. Spectrophotometric methods are simple and low cost but due to its lack of sensitivity and selectivity it is not widely used in research, environmental and clinical laboratories.

We have developed a catalytic spectrophotofluorimetric method for the determination of POD with para-acetaminophenol. Among the numerous methods reported in the literature for the detection of peroxidase and hydrogen peroxide, attention has chiefly been concentrated on the spectrophotofluorimetric method due to its highly sensitive and selective nature. The higher molar absorptivity, lower values of detection limits and RSD for HRP claims for the superiority of the method. The kinetic studies show that the lesser value of \( K_{m}^{H_{2}O_{2}} \) for the peroxidase enzyme from the Lineweaver–Burk plot signifies selectivity and specificity of the proposed reaction. Para-acetaminophenol is relatively inexpensive and water soluble. It has required sensitivity and stability. The proposed reagent, are non-carcinogenic and can replace other methods without any extra procedural difficulties as they also exhibit a good fluorescent probe.

II. MATERIALS AND METHOD

A. Apparatus

Fluorescence measurements were carried out on a RF-5301pc spectrofluorophotometer Shimadzu coupled with Xenon light source, quartz cuvettes of 1 cm path length and a DR-3 data recorder. The pH of solutions used was measured with a PHS-4C model digital pH-meter made in Chendu, China. A stop-watch was used for recording the reaction time.

B. Reagents

All chemicals used were of analytical-reagent or higher grade. De-ionized water was used throughout. A 0.2 g ml\(^{-1}\) stock solution of HRP was prepared by dissolving an appropriate amount of HRP (was purchased from Himedia Laboratories, Mumbai, India) in distilled deionised water. H_{2}O_{2} solution was prepared by dilution of a 30% solution with distilled deionised water (standardized by titration with potassium permanganate). 16.6 mM potassium dihydrogenphosphate /sodium hydroxide buffer at pH 7.0 was used. Para-acetaminophenol solution (6.6 mM) was prepared by dissolving an appropriate amount of the reagent with distilled deionised water.

C. Sample and crude extract
As a source of peroxidase, the leaf/stem portion of Raphanus Sativas, Daucus Carota, Brassica Oleracea and Spinacia Oleracea A. sessilis, T. cardifolia, B. oleracea var. capitata, var. neapolitanum, and L. sativa were collected from the local markets, transported at 4 °C to the laboratory, and stored at -20 °C until used. Samples (5 g) were washed with distilled water and homogenized in a blender using 50 mL of 100 mM phosphate buffer at pH 6.0. The extract was passed through cheesecloth and centrifuged at 12000 g for 15 min, and the supernatant was labeled as crude extract.

D. Protein Determination

The total protein concentration was determined in triplicate by the Lowry [19] method, using bovine serum albumin as a standard.

E. Evaluation of Kinetic Parameters

In the projected method, separate experiment for each H$_2$O$_2$ concentration was performed with varying concentration of Para-acetylamino phenol. Michaelis - Menten constants for Para-acetylamino phenol at concentrations from 0.0618 mM to 0.1545 mM was determined. The H$_2$O$_2$ concentrations of 2.5, 4.5, 7.5 and 10 mM in the final volume of 3 mL were used for each kinetic study. The pH and temperature were kept constant. The kinetic mechanism followed by peroxidase can be confirmed by the double-reciprocal plot of the rate versus Para-acetylamino phenol concentrations at different H$_2$O$_2$ concentrations. Assuming the initial rate as ($V_0$), a general equation for the mechanism in the forward direction is given as a function of all substrate concentrations. By rearrangement of Henri-Michaelis-Menten equation into a linear form,

$$
\frac{1}{V_0} = \frac{1}{V_{max}} + \frac{K_p}{V_{max}} \frac{H_0}{V_{max}} + \frac{K_p}{V_{max}}
$$

The initial velocities were determined as a function of all substrate concentrations. The Michaelis-Menten constant was evaluated by varying one and keeping the other constant.

Keeping H$_0$ as constants, Equation (1) yielded a constant slope intercept given by,

$$
\text{Intercept} = \frac{1}{V_{max}} + \frac{K_p}{V_{max}}
$$

$$
\text{Slope} = \frac{K_p}{V_{max}}
$$

Replots of the intercepts of kinetic equation (2) versus $\frac{1}{H_0}$ concentration produced a straight line with a constant slope and intercept as,

$$
\text{Intercept} = \frac{1}{V_{max}} + \frac{K_m}{V_{max}}
$$

$$
\text{Slope} = \frac{K_m}{V_{max}}
$$

The $V_{max}$ of the catalytic reaction was ascertained by saturating the reaction system with Para-acetylamino phenol, and H$_2$O$_2$. The constants $K_p$ and $K_m$ can be determined from the equations 3, and 5, respectively.

F. General Procedure

For the assay of peroxidase and peroxide, Place 0.1 mL of para-acetylamino phenol solution and 16.6 mM KH$_2$PO$_4$/ NaOH buffer solution (pH 7) into a 3 mL calibrated tube, followed by 0.1 mL of 66 µM hydrogen peroxide, dilution with water to give a total of 3.0 mL. Brought the temperature to 25 ± 0.1 °C in a thermostat for 10 min. The peroxidase solution was then added as the starting reagent and the mixture was vigorously shaken and transferred into the 3 mL thermostatically controlled cell of the spectrophotometer, which recorded the change in fluorescence intensity ($F$, 1–5 min) with time $t$ in $\lambda_{em}$ = 326 nm and $\lambda_{em}$ = 435 nm. The blank experiments were repeated by the same procedure to obtain the relative fluorescence intensity $F_0$ and the value of $\Delta F = F_0 - F$ was calculated. The calibration graph was constructed from the plot of the $\Delta F$ versus the standard peroxidase concentration. Similarly we find out the concentration of H$_2$O$_2$.

III. RESULT AND DISCUSSIONS

A. Optimization of Experimental Variables

Optimizations of experimental conditions parameters such as effect of substrates, co-substrates, different buffer concentrations, temperature and incubation period, which affect enzyme assay, have been studied.
B. Spectral Characteristics of Buffer Solutions

The pH of the medium had an important factor on the fluorescence intensity of the oxidized product of para-acetaminophenol by H$_2$O$_2$. We compared KH$_2$PO$_4$/NaOH with KH$_2$PO$_4$/K$_2$HPO$_4$, Na$_3$BO$_3$–NaOH, Tris–Hcl buffer, ammonia ammonium chloride buffer and sodium acetate/ acetic acid buffer with pH controlled in the range 4.0 –10.5 in each case and obtained the fluorescence spectra of different buffer solutions. The experimental results (Fig. 2(a)) showed that the optimum pH range was found to be 7.0 with KH$_2$PO$_4$/NaOH buffer. Therefore, a pH of 7.0 was fixed. As the volume of the buffer added (from 0.1 to 1.0 ml) also affect on the fluorescence intensity, different volume of KH$_2$PO$_4$/NaOH buffer solution was checked, the 0.1 ml of buffer solution in 3 ml (16.6 mM) reaction mixture shows the maximum fluorescence intensity, therefore 16.6 mM ml was used in subsequent experiments. The response of enzymatic activity with respect to pH is shown in the figure (1).

![Fig (1): Effect of pH on the rate of reaction.](image)

C. Effect of Para-acetaminophenol

The influence of para-acetaminophenol, on the rate of reaction was studied. There is a linear relationship between the analytical signal and para-acetaminophenol concentration over the range 6.8µM to 220µM, beyond which there is no considerable increase in the rate. Hence for all further assays of para-acetaminophenol concentration of 220 µM was selected.

D. The effect of temperature and time on the reaction

The Stability and activity of the enzyme is mainly affected by the temperature. This can be clearly appreciated when studying enzyme thermal inactivation: enzyme activity increases with temperature but enzyme stability decreases. These opposite trends make temperature a critical variable in any enzymatic process and make it prone to optimization. Temperature sensitivity was determined by pre-incubating 3 ml of reaction mixture containing 220µM para-acetaminophenol, 66 µM H$_2$O$_2$, and 150 pM peroxidase in 16.6 mM KH$_2$PO$_4$/NaOH buffer at pH 7.0 for 5 minute at various temperatures (0 - 80 °C). The activity of the enzyme was registered as a function of the fluorescence intensity of the solution. The activity initially increased up to 25 °C and decreased thereafter. The effect of reaction time demonstrated that the oxidation reaction was completed within 5-6 minute at room temperature; the fluorescence intensity reached a maximum after 5 min after the reagents had been added and remained constant for at least 1h. Hence, after all the oxidation reactions were carried out for 5 min, the subsequent fluorescence measurements were made at room temperature with in 1 h.

E. Effect of the Addition order of Reagents

Addition of various reagents in different order had influence on the fluorescence intensity. The experimental results indicated that it was optimum when solutions were added in the following order: para-acetaminophenol, buffer, H$_2$O$_2$, water and peroxidase. So this order was selected in the following experiment.
F. Optimisation of Hydrogen peroxide

The effect of different concentrations of H$_2$O$_2$ on the rate of reaction was studied, where rate increased linearly up to 66 µM concentration of H$_2$O$_2$ beyond which the rate was independent of the concentration due to the enzyme getting saturated. Although at higher concentration of H$_2$O$_2$, the reaction rate increased, but the change in the rate was not within the linear range. Hence it is decided to have a final H$_2$O$_2$ concentration of 66 µM in 3 ml of the reaction mixture. The effect of H$_2$O$_2$ on the rate of reaction is shown as inset of Fig. 3 (B).

G. Recommended procedures for the assay of peroxidase

Place 0.1 ml of KH$_2$PO$_4$/NaOH buffer solution (pH 7) and 0.1 ml of para-acetaminophenol solution into a 10 ml calibrated tube, followed by 0.1 ml of 2 mM hydrogen peroxide, dilution with water to give a total of 3.0 ml. Brought the temperature to 25 ± 0.1 °C in a thermostat for 5 min. The peroxidase solution was then added as the starting reagent and the mixture was vigorously shaken and transferred into the 3 ml thermostatically controlled cell of the spectrofluorimeter, which recorded the change in fluorescence intensity ($F$, 1–5 min) with time $t$ in $\lambda_{ex} = 326$ nm and $\lambda_{em} = 435$ nm. The blank experiments were repeated by the same procedure to obtain the relative fluorescence intensity $F_0$ and the value of $\Delta F = F_0 - F$ was calculated. The calibration graph was constructed from the plot of the $\Delta F$ versus the standard peroxidase concentration. The initial velocity was recorded by the $\Delta F$-time curve. $\Delta F$- time curves of the catalytic system in the presence of different concentrations of HRP are presented in Figure 2. The range for the linear relationship between the initial velocity and the concentration of enzyme was 19 – 378 pM. The repeatability of the proposed method was checked with two series of different samples having a HRP concentration of 19 and 378 pM, respectively. The standard deviation was 1.88 in both cases. The precession (RSD) of the fluorescence measurements was about 0.26 % in all instances.

H. Quantification of H$_2$O$_2$

Prior to use, the H$_2$O$_2$ stock solution was standardized by titration with secondary standard KMnO$_4$, and accurate dilutions were made with distilled water to make a range of working standard solutions. The concentration of H$_2$O$_2$ was determined in 3 mL of the solution containing 220 µM para-acetaminophenol solution, and 150 pM peroxidase in 16.6 mM KH$_2$PO$_4$/NaOH buffer at pH 7.0. The reaction was initiated at 25 °C by adding 100 µL of 0.5 concentrations of H$_2$O$_2$ within the linear range. A blank was used that contained H$_2$O in place of H$_2$O$_2$. The solution was then detected spectrofluorimetrically after about 5 min incubation (the reaction endpoint). At the selected excitation wavelength of 326 nm we obtained the emission spectra with a maximum relative fluorescence intensity centred at 435 nm. The initial rate was then plotted against the concentration of H$_2$O$_2$ to obtain the calibration graph. The linearity of the graph lies between 0.52 and 66.6 µM H$_2$O$_2$. The calibration graph for the quantification of H$_2$O$_2$ is shown in fig (3A)
Fig. (3). A. Calibration plot for the quantification of H$_2$O$_2$. B. The effect of H$_2$O$_2$ on the rate of the reaction

I. Assessment of Kinetic Constants
To establish the ping-pong mechanism and Michaelis-Menten constant values for the substrates were obtained from Equation (1). The initial velocities ($V_0$) were determined as a function of all the substrate concentrations ($H_0 = H_2O_2$, $P_0 =$ Para-acetylaminophenol). Within one experiment, $H_0$ was kept constant when $P_0$ was changed, while in another experiment, $P_0$ was kept constant when $H_0$ was changed. More experiments were conducted for both Para-acetylaminophenol at different concentrations of H$_2$O$_2$. The constant slope obtained in a double-reciprocal plot of $V_0$ versus $P_0$ (Fig. 4) at different concentrations of H$_2$O$_2$ substantiate the ping-pong mechanism of HRP. The re-plots of the intercepts of Figure 4 versus the reciprocal concentration of H$_2$O$_2$ also give a constant slope (shown in inset of fig. 4). The $K_p$ was evaluated using equation (3) which is found to be 24 μM. The value Of $K_H$ and $V_{max}$ for the peroxidase enzyme from the Line weaver-Burk plot is 103 μM and 1000 EU min$^{-1}$, shown in fig. 5.

Fig. (4): Kinetic behaviour of Para-acetylaminophenol for pure HRP (378 pM). A plot of double reciprocal of substrate–velocity relationship according to Eq. (1).
Analytical Characteristics

Under the optimal experimental conditions, there was a linear relationship between the fluorescence intensity and $H_2O_2$ concentration, in the range of 0.52 – 66 µM. The correlation coefficient 0.998 and regression equation is $y = 6.448x + 10.28$ in the rate method and in fixed time method the correlation factor is found to be 0.993 and regression equation is $y = 10.73x + 18.74$. The relative standard deviation was 0.26 % obtained from a series of 10 standards each containing 150 Pico M POD. The standard deviation of the fluorescence measurements was 1.88 obtained from a series of 10 blank solutions. The limits of detection ($LOD = 3\sigma/slope$) and limit of detection ($LOQ = 10\sigma/slope$) is 0.6995 pM and is 2.33 pM respectively.

Discussion of Reaction Mechanism

The probable reaction mechanism involved is based on the self coupling of Para-acetylaminophenol, a non fluorescent compound oxidized by strong oxidizing agent like $H_2O_2$ in presence of HRP to give a highly fluorescent fluorophore 2,2'-dihydroxy-5,5'-diacetyldiamine biphenyl [39]. The fluorescent product was confirmed by spectral analysis of 2,2'-dihydroxy-5,5'-diacetyldiamine biphenyl, which shows the native fluorescence with an excitation maximum at $\lambda_{exc} = 325$ nm and an emission maximum at $\lambda_{em} = 439$ nm.
Fig. 6. The emission ($\lambda_{em} = 439$ nm) fluorescence spectra of Para-acetylaminophenol with different concentration of Hydrogen Peroxide.

IV. CONCLUSION

No work has been published thus far on the self coupling of Para-acetylaminophenol for the quantification of peroxidase and hydrogen peroxide. These co-substrates are versatile, economical, water soluble, have high catalytic power and catalytic efficiency. Optimization of the reaction conditions from the enzymatic oxidation allowed for the determination of $\text{H}_2\text{O}_2$ as low as $0.52 \mu\text{M}$, which is more sensitive and also unattainable by the standard guaiacol method. The linearity ranges for peroxidase assay by some of the reported analytical methods were $0.0227–1.136$ nM for chemiluminescence.
[41], 5.4 \times 10^{-4} \text{nM to 0.1088 nM for electrochemical [42] method, The HRP-catalyzed oxidative self coupling of Para-acetylaminophenol in the presence of peroxide allowed the determination of the HRP assay achieved within the linearity range of 18.75 – 378 pM. The lower limit of detection (LOD = 0.6995 pM) and quantification (2.33 pM) clearly indicates high sensitivity of the method. Thus, the proposed method serves as an appropriate replace to guaiacol for the assay of peroxidase. The kinetic study shows that the Km values for $K_m^{H_2O_2}$ and $K_m^P$ is 103 and 24.09 µM respectively. This is lesser than guaiacol method. The catalytic power was found to be ($K_m^{P}$) 9.708 \times 10^6 \text{min}^{-1} \text{M}^{-1}. Due to the low Michaelis–Menten constants value and more catalytic power the proposed method is more efficient for the assay of peroxidase in crude plant extracts.

**ACKNOWLEDGEMENT**

One of the authors (Chamaraja N.A) thanks university of Mysore, Mysore, Karnataka, India for providing research facilities.

**REFERENCES**