

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6270

The Use and Industrial Importance of Virtual

Databases

Dr V S Dhaka, Sonali Vyas

Professor & Head, Dept of CSE, Jaipur National University, Jaipur, India

Research Scholar, Dept of CSE, Jaipur National University, Jaipur, India

ABSTRACT: Virtualization refers to the abstraction of logical resources away from their underlying physical

resources to improve agility and flexibility, reduce costs, and thus enhance business value. Virtualization allows a set of

underutilized physical infrastructure components to be consolidated into a smaller number of better utilized devices,

contributing to significant cost savings. Virtualization has taken the computing world by storm. Server virtualization

was the front of the virtualization wave, but we are now seeing a strong push to virtualize storage and networks. While

SQL databases are the most popular for addressing online transaction processing (OLTP) workloads, they are also the

most challenging databases to virtualize because of the way they tightly link the processing and data on a single

physical server.This document looks at the different approaches to database virtualization and the benefits each

approach derives. It also looks to the future of database virtualization and which database architectures are ideally

suited to be virtualized.

KEYWORDS: Virtualization, Shrading, DV, Query Complexity, Data Replication

I. INTRODUCTION

Virtualization is the creation of a virtual version of something (operating system, storage devices, database, network,

etc.) that can be deployed and managed in a more fine-grained manner than the physical item itself. For example, a

single physical server (or machine) can be sliced into various virtual servers (virtual machines or VMs), each

embodying various resources (memory, disk, CPU cores, etc.).

Instead of dedicating a server to a specific function, which may not fully utilize the capabilities of that server, that

server can be sliced into various virtual machines. The full capabilities of that physical server are then allocated to the

virtual machines (VM) as needed. For example one VM might have a large slice of the available memory, while a larger

amount of disk space might be allocated to another VM. If one of the virtual machines is running low on a specific

resource— e.g. memory—more memory can be allocated to that VM on the fly. Unlike a physical server, allocating

resources to virtual machines can be done dynamically, enabling a greater degree of flexibility and more granular

management.

II. LITERATURE REVIEW OF CLOUD COMPUTING & VIRTUALIZATION

Cloud computing and virtualization are synonymous. Cloud computing is based upon virtualizing and allocating

compute, storage and network services in a shared multi-tenant environment. Virtualization is a key enabler for cloud

computing. At the same time, cloud computing is also a powerful force pulling virtualization into the enterprise. The

two are intimately linked, and enjoy a symbiotic relationship.

2.1 The Benefits of Virtualization

―Our focus has been that many databases are accessible and manageable as if they were a single database. Virtualization

provides a common framework for better availability, scalability, manageability and security.‖

– Noel Yuhanna, Principal Analyst, Forrester Research

Despite some minor nuances, the benefits of virtualization are common regardless of what is being virtualized: server,

storage, network or database. The following is a list of the benefits delivered by virtualization[1-3]:

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6271

1. Flexible Deployment: By dealing with compute resources on a logical level, instead of a physical level

(individual servers), you can run smaller applications in a fraction of a server, while larger processes can be

run across multiple servers.

2. Rapid Deployment: By creating a virtual image of a server, you can rapidly deploy that image on any server,

avoiding the nuances of the various physical servers. Instead of running an installation process on each server,

you just install the VM on that server once and then copy any number of application images on top of the

VM.

3. Server Consolidation: By allocating compute resources as needed, you avoid having dedicated, but

underutilized, servers. Those server capabilities can be safely used across multiple independent applications,

or applications can be run across multiple physical servers.

4. Business Flexibility: In the old days, each new development effort would entail purchasing new servers to run

it, and they needed to accommodate both growth and peak load scaling of that new application. Now you can

simply run that application on unused compute resources, and if and when you need to scale it, you simply

allocate those resources from an unused pool of virtualized resources.

5. Energy/Cost Savings: By consolidating your applications on fewer physical ―shared‖ servers you can unplug

unutilized servers, reducing your energy use and your energy and server costs[6].

6. High-Availability: By enabling multiple virtual instances of an application to run on separate servers, loss of

physical servers simply means that the load is handled by the remaining instances, until new instances can be

launched[4].

7. Management Automation: By managing your application at a logical level (versus the physical servers) and

abstracting away any specific server differences, IT management, including processes such as backups, are

dramatically simplified and can then be automated.

8. Improved Quality of Service: Cloud environments result in a higher degree of application density. This can

result in the noisy neighbor problem, where a neighboring application is consuming such a high degree of

computing or network resources, that it reduces the performance, or quality of service, of the nearby

applications. Mobility, the ability to move an application without bringing it down, enables cloud management

technicians to move applications away from noisy neighbors, thereby ensuring a high quality of service and

customer satisfaction[5, 6].

These are some of the key benefits recognized through virtualization. This is complicated by the fact that there are

degrees of virtualization.

2.2 What is Database Virtualization?

Database virtualization means different things to different people; from simply running the database executable in a

virtual machine, or using virtualized storage, to a fully virtualized elastic database cluster composed of modular

computers and storage components that are assembled on the fly to accommodate your database needs. We will look at

each type of virtualization and the benefits they provide.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6272

Figure 1: Basic Understanding of Database Virtualization

Virtualization is anathema to traditional SQL-based OLTP databases. These databases tightly integrate the compute,

caching and storage in order to: (a) optimize performance; (b) coordinate locking to ensure that the database remains

consistent; (c) provide ―copies‖ for fail-over or high-availability. Building a fully virtualizable database management

system (DBMS) is a huge undertaking. However, deploying and using a fully virtualized DBMS is actually quite

easy, since it eliminates a collection of deployment challenges required to scale-put single instance DBMS.

Data virtualization, DV for short, attempts to perform data cleansing, data transformation and data correlation as data

moves out from production systems thus avoiding any intermediate storage [9]. This is opposed to Data warehouse

approach which physically changes data in each stage and loads it in to some data store [10]. Typical Data

virtualization platform requires:

 Ability to Discover data stored in data sources

 Ability to retrieve data from different data sources

 Ability to define views or virtual tables

 Ability to optimize federated query

 Ability cache data

 Fine grained security

Figure 2: Data Virtualization – Overview

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6273

The above diagram depicts usage of DV platform for integrating data from databases, SAP and web services. Each

phase of data analysis gets defined using virtual tables; please refer to section below on more details on virtual tables.

Each phase uses data from previous phase by referring to virtual table from previous section. When analysis needs to be

done DV compiles all of the definitions of virtual tables in to a single SQL, which is then compiled, optimized and

executed.

2.3 Data Source Connectors
DV platform needs to bring data from disparate data sources. Different data sources have different access mechanisms.

Data coming from data bases would need queries submitted through SQL using JDBC/ODBC connections, data coming

from supply chain and financial apps would require their proprietary access mechanisms, fetching data from web

services would require web service access methods. DV platform needs to have data access mechanisms for all these

different data sources [11, 18].

2.4 Data Discovery
Data may need to be retrieved from variety of data sources like databases, applications, flat files, web services. DV

platform needs to understand the schema of data storage and relationship among them. For example with data source

that uses data base, a DV platform needs to figure out all of different tables in the database, constraints defined on

them, primary-key, foreign key relationships. Databases typically store this information in their system catalogs which

could be used by DV[13]. The metadata about these schemas needs to be stored with in DV platform so that when user

submits a query, DV platform can properly execute the query by fetching data appropriately.

2.5 Virtual Tables/Views
Virtual Tables or Views are the result set of a stored query which can be used just like a regular database table. The

table schema and table contents are defined by SQL. The table is considered virtual because table contents are not

physically stored. Data for the virtual table is brought in from underlying database tables when query defining virtual

table is executed.

For example ―Inventory_Data‖ is a virtual table that has columns ―productid‖, ―inventory‖ and ―cost‖. The contents of

the table ―Inventory_Data‖ comes from database table ―Inventory_Transactions‖.

View Inventory_Data:
Select productid, inventory, currencyConvertToDollars(cost) as cost from Inventory_Transactions

Inventory_Transactions Table in DataBase

In order to be used for data integration DV platform must do data cleansing, data transformation and data correlation.

DW does each of these stages separately and produces physically transformed data at each stage. Unlike DW and ETL,

DV platform would do all of these stages mostly in one step before producing the final report [16]. DV platform needs

to define data cleansing, data transformation and data correlation logic programmatically using SQL like query

language. Typically this is achieved by defining views or virtual tables; typically users would define multiple such

views at different levels of abstraction. When a report is generated data moves from data sources through the layers of

these views cleansing, transforming, joining data before producing the report.

In some cases DV may use implicit virtual tables to expose data from data sources. This is because underlying data

source may not be relational and instead could be hierarchical, multi-dimensional, key value store, and object data

model; DV needs to convert all of these data models back in to relational data model and provide SQL as the language

for data access. In such cases DV would expose underlying data as tables; for such implicit virtual tables, there

wouldn’t be any SQL defining the schema instead it would be natural mapping of underlying data in to relational

able[14, 17].

.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6274

Figure 3: Data Virtualization – Example of Virtual TablesData Virtualization – Example of Virtual Tables

The above diagram depicts deployment architecture for data integration using DV. In this example there are six

different types of Virtual Tables one using the other as the source table. Data of interest from each data sources is first

defined by data source specific views. Data cleansing views takes data from data source specific views and cleans them

of data errors. Typically cleansing of data entry errors is done by passing data through custom build procedures.

Transformation for semantic differences may be defined as separate virtual tables. Cleansed data is exposed as data

services for each business entity. Data from the various business entities is correlated which is then transformed as

required by analysis use cases. This data may optionally further go through additional transforms.

At each stage data from previous stage is accessed by specifying the virtual table from previous stage as the source of

data. When a query is submitted to the top level virtual table (Business Transformation Views), DV would assemble the

complete SQL by chaining user submitted query with the SQL that defines virtual tables from all stages [20].

III. COST BASED QUERY OPTIMIZER

Since data cleansing, data joining, data transformation is all defined in virtual tables and since data is fetched from

many different data sources, the relevance of optimal query execution becomes very important. Figuring out the cost of

bringing data from different data sources and then planning query execution would reduce the query latency. Cost

based optimizer is an important feature in reducing query latency time.

In the traditional data integration approach since the whole data is already in DW, the cost of fetching data from

different data sources is avoided. Also DW often would have indexes built on data. Since DV doesn’t store data, DV

cannot take advantage of indexes. Most DW databases would have cost based optimizers, but focus of DW optimizer is

to cut disk access time whereas in DV the focus of optimizer is to push work load as much as possible to backend

production systems.

IV. DATA CACHING

Ideally all of the data cleansing, joining and transformation should happen as data flows out from production systems;

however this approach has some side effects:

 Query Latency may increase

 May impose load on production data stores

 May loose historical data

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6275

To avoid these problems sometimes it may be desirable to load intermediately transformed data in to data stores; this is

effectively data caching. For example the output of data cleansing may be cached to avoid the load on production

systems. Caching data needs to take in to account the rate of change of data in data sources.

V. FINE GRAINED SECURITY

Since DV platform needs to bring data from different data sources, it needs to manage the authentication and

authorization to access various data sources. Similarly DV platform needs to return data to users based on their

credentials. This would often require data masking and data filtering based on user authorization.

ETL process also needs to access data from production systems. Based on whether pull or push model is employed

ETL needs to manage authentication and authorization to back end production systems. Similarly DW needs to deliver

data based on authorization. In terms of security requirements there is actually not much difference between DV and

ETL-DW.

VI. DATABASE VIRTUALIZATION CHALLENGES

Traditional databases operate on a single physical computer. They tightly integrate the compute, caching and

storage functions, operating as a single unit on a single server in order to optimize performance[21-23]. This runs

completely contrary to virtualization where the idea is to separate the logical (database functions) from the physical

(the server). So the biggest challenge in virtualizing databases is to abstract logical processes away from the physical

hardware, while still maintaining competitive performance.

If we look at the underlying database architectures, we find that the shared-nothing architecture is the antithesis

of virtualization. Its name says it all: ―share nothing‖. This architecture creates database units that are isolated, tightly

tied to physical servers and that do not ―share‖. Yet virtualization, at its core is the sharing of compute processes

across a pool of compute resources. Clearly, retrofitting the shared-nothing database architecture, in order to virtualize

it, is a non-starter, unless you are willing to settle for a grossly sub-optimal degree of virtualization.

Shared-data databases—also known as shared- disk or shared-everything databases —are far more conducive to

virtualization. They start with the premise that the data will be shared across an arbitrary collection of database

servers. The underlying architecture must include a distributed lock manager to coordinate the locking processes of

these various servers, ensuring that they do not collide with each other, which would result in inconsistency. This

distributed locking is integral to shared-data databases.

The traditional name of these databases was shared-disk, because they enabled multiple database nodes to share a

single data repository (disk). However, this creates an I/O bottleneck that is simply unacceptable. Modern shared-data

databases, like Oracle RAC and ScaleDB, employ a different model. They distribute the data across an arbitrary

number of mirrored servers. This approach offers a number of advantages, including:

(1) creating a pool of RAM cache to supplement the database nodes;

(2) spreading the disk I/O across an arbitrary number of servers enables reads and writes to be fanned out to multiple

disks, overcoming the single disk head bottleneck;

(3) queries can be parallelized across multiple storage servers, with the database node then aggregating the results from

the storage nodes.

This process is analogous to map-reduce, but it is performed within the ACID (atomicity, consistency, isolation and

durability) model.

The shared-data database architecture is ideally suited for virtualization. It inherently provides an abstraction layer

between the data and the compute, enabling them each to operate on an arbitrary number of servers or virtual machines.

The distributed lock manager also coordinates the interaction between the instances of the database, ensuring that the

database remains consistent. In short, once one has implemented a shared-data database architecture, he has solved all

of the virtualization challenges; and created a virtualized database.

Since the cloud, both public and private, is driving the virtualization trend, the next question is whether the shared-

data database has been optimized for cloud infrastructures. Those cloud infrastructures are almost exclusively based

on Ethernet. Oracle RAC requires Infiniband for a variety of reasons including its RDMA capabilities. This means

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6276

that a RAC solution cannot run on most standard clouds. ScaleDB, on the other hand, runs over Ethernet, making it

cloud compatible.

VII. DEGREES OF DATABASE VIRTUALIZATION

There are a variety of ways to virtualize the database, each with its own collection of benefits. The following reviews

some of the approaches to virtualization and exposes the degree of virtualization for each approach.

Figure 4: Running the Database in a Virtual Machine:

This simply means running a single instance of the database executable on top of a virtual machine. This enables you

to release unused compute and storage to a pool of virtual resources, when the database is not fully utilizing them.

When using a dedicated server, it is not uncommon for the database to only consume an average of 10% of the server’s

capacity[23]. The ability to pool and repurpose these resources is a good first step toward database virtualization.

Another way of looking at this is allocating pooled resources to the database, as needed. For example, you can increase

the memory, disk or CPU available for the database to use. This is nothing more than the inverse perspective or pooling

unused resources—two sides of the same coin—but this is a perspective that is often used to describe the benefits of

virtualization, earning it a mention here. Since this approach still runs on a single instance of the database and since the

compute and storage cannot scale independently, this approach offers only a limited benefit.

VIII. VIRTUALIZATION AND SHARDING

Sharding is one approach to partitioning the database, resulting in multiple identical images of the database, each

storing different unique pieces of the data. For example if you have a million users, you might have ten shards

containing 100,000 users each. Since each database has an identical schema, exceeding 1,000,000 users means you

simply spin-up an eleventh image of the database. The advantage of combining virtualization and sharding is that you

can allocate resources on the fly to the virtual machines powering various shards, according to their needs. For

example, if the shard containing users 400,001 – 500,000 uses less resources, you can reduce them accordingly.

Similarly, if users 600,001 – 700,000 are heavy users of the database, you can allocate more resources to that shard.

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6277

Figure 5: Sharding creates database silos working independently of each other

While sharding and virtualization enjoy some synergy, sharding does not fully exploit the advantages of database

virtualization. Sharding relies on a tight integration between the compute and the data files, so you cannot separate the

two and scale them independently.

While each shard has a common schema, they are each limited to their unique piece of the data, and the application tier

must know which piece (or shard) of that data is on which machine, so it can route the database requests accordingly.

This creates physical silos of data that are tied to machines.

The downside of sharding is that the database shards all act as independent databases. This means that any function

that operates across these shards must be moved from the database, where it is normally handled, into the application

[25]. For example, if you want to do joins, counts, range scans, aggregates, etc. that include more than a single shard,

you have to code that capability in the application tier. This creates more work, introduces more potential bugs and is

less efficient than simply processing requests in the database itself. Tools: SQL Azure Federations, CodeFutures’

dbshards, ScaleBase, various NoSQL Databases.

IX. STORAGE VIRTUALIZATION

Databases typically address data as blocks, versus files, enabling them to operate on more granular chunks of data. In

the past, Network Attached Storage (NAS) stored data as files, while Storage Attached Network (SAN) stored data as

blocks, but now both NAS and SAN provide block storage. Leading vendors of both storage devices provide storage

virtualization, effectively mapping logical requests for data to the physical location of the data. They both implement

tiered storage plans, where most frequently used data is cached in memory, then solid state disks (SSD or Flash), an

finally on rotating disks. By virtualizing the data, the most popular data can be moved, on the fly, from slower to faster

storage media. This doesn’t solve the issue of virtualizing the compute aspect of the database, but it does provide

certain storage-centric advantages. Products/Services: Virtualized storage products are available from EMC, Netapp,

HP, IBM, Hitachi, Dell, Oracle, Amazon and others.

9.1 Database Storage Virtualization/Replication:

The actual files or blocks of data stored by a database do not capture all of the ―state‖ information of the database.

There are also the transactions in process. Simply copying the files or blocks to another instance of the database fails to

capture this state information, and yields an inconsistent copy of the data. In order to capture a consistent copy of the

data, for use by another instance of the database, you must maintain the links between the databases. This can be

accomplished by uni-directional replication (master-slave) or bi-directional replication (master-master).

Database Replication is built into most databases, and sends information—typically the log file— which is then

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6278

―played‖ or executed by a slave database as if the commands were sent directly to that database.

Multi-Master Replication This is a bi-directional replication system that allows writes on more than a single master

and then replicates those changes across a collection of servers. This is supported by various commercial databases or

add-ons to those databases. More information about multi-master replication is available here. While multi-master

sounds great, it is often a retro-fit or after-market fix to the database and can result in additional problems, including

database inconsistency.

Data Replication does not cause the database to process a log, it creates and maintains the file- or block-level

synchronization itself. Examples include Linbit’s DRBD and Delphix. These approaches can be used to maintain a

fail-over copy of the data, or to create copies for use in functions such as reporting/analytics, QA, test, development,

etc.

9.2 Replicated In-Memory Databases:

In an effort to provide more mobility of the database instances, some companies have created in-memory

databases By maintaining all of the data and state in RAM, it is well contained, fast and more mobile. In-memory

DBMS have long been projected to replace disk-based database, but have perennially fallen short. While working in

memory only provides performance advantages, relative to disk-based solutions, they have faced challenges with

increasing data size, durability and recoverability. One of the earlier in-memory only databases was Times10,

indicating a 10X performance advantage by remaining in memory. The most recent entrant to the in-memory database

is SAP’s Hana. VMWare has implemented in-memory databases in an effort to make them easier to virtualize [1, 2,

3].

9.3 Sharded Databases with SQL Routing:
When using a partitioned, or sharded, database you can run a SQL- aware load balancing process above the various

sharded databases to facilitate routing database requests to the appropriate server. This SQL-aware load balancing

process can be operated as a separate tool that works with various underlying databases (e.g. ScaleArc), or it can be all

handled under the covers by extending the database itself (e.g. MySQL Cluster and Xeround).

By putting a router in front of a sharded or shared-nothing database, every database request requires two additional

network hops, to the actual data and back again. If you have a single routing node, like Scalarc, you can include

caching such as Memcached. However, this approach limits throughput, since you have only one node handling all

routing, in order to avoid cache incoherency. Using a SQL-aware router in front of a standard database does not

enhance availability of the database, it merely handles routing and/or caching.

The alternate approach—used by MySQL Cluster and Xeround—sacrifices the performance boost of local caching, in

exchange for higher throughput by using multiple routing nodes. In order to achieve reasonable routing performance,

all indexes must be maintained in memory; otherwise, database requests could insert an additional disk look-up, which

has a huge impact on performance.

9.4 Shared-Data Clustered Databases:

Oracle Real Application Clusters (RAC) and ScaleDB are shared-data clusters. Shared- data databases inherently

separate the compute from the storage, enabling both functions to be virtualized and to scale independently of each

other. By separating these two functions, and turning them into virtual building blocks, clusters can be assembled and

modified on the fly, all without a single point of failure.

While some of the shared-data advantages mirror those provided by sharded databases with SQL routing, there are

significant differences under the covers that manifest themselves in a superior performance profile. The performance

advantages are primarily in the following areas:

1. Performance improvement from local caching on the first database node contacted, which frequently avoids

additional network hops.

2. Faster cross database functions (e.g. joins, range scans, counts, aggregates, etc.) since each database node see

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6279

the entire database and can process any function by itself, without involving other shards.

3. Indices are not limited to memory, and can overflow into disk, while still delivering excellent

performance.

4. Queries can be distributed across the smart storages, in parallel, to further boost performance. This is

analogous to map reduce, where each storage node processes its portion of the data, and then the database

node combines the results from various storage nodes. For example, if the database gets a request for all sales

in the past week, this request can be sent to the storage nodes, which process their portion of the data locally

and only send the results.

5. This both parallelizes the processing and reduces the network traffic, since it only send results over the

network and not the entire table.

Figure 6: Shared-disk DBMS runs multiple virtual instances of the database on virtual machines

By separating and virtualizing the compute and storage functions of the database, shared-data DBMS deliver

more of the benefits of database virtualization than any other approach.

X. CONCLUSION

In this paper we have presented an extensive study of different database virtualization techniques, their advantages and

disadvantages along with trending market scenario. Virtualization, by virtue of the rich benefits it delivers, has been an

unstoppable force in the server market. The detailed study presented in this paper concludes that Database

Virtualization has great importance and benefits in remote and underlying architecture independent data access. Many

organizations have already adopted DV and are reaping benefits from it. Some of these use cases are depicted in ―Data

Virtualization‖ book, printed Sep 2011, by Judith R. Davis and Robert Eve. Data Virtualization software companies

like Composite Software, Denodo, Informatica and IBM seems to be growing their Data Virtualization business.

Though the database virtualization is very useful technique but it have some limitations as well. The research

community has to work extensively to overcome these limitations. In other words these are the future work directions

for the researchers.

REFERENCES

[1] Figueiredo R, Kapadia N and Fortes J. A. B., ―The PUNCH Virtual File System: Seamless Access to Decentralized Storage Services in a

Computational Grid‖, Proc. IEEE International Symposium on High Performance Distributed Computing (HPDC), August 2001.
[2] Backman V, Gurjar R, Badizadegan K, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, ―Polarized light scattering spectroscopy for

quantitative measurement of epithelial cellular structures‖, IEEE J Sel Top Quant. Elec., 5, 1019, 1999.

[3] Backman V, et al. ―Detection of preinvasive cancer cells in situ‖, Nature, 406, 35-36, 2000.
[4] Backman V, Gurjar R, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, Dasari RR, Feld MS, ―Imaging human epithelial properties with

polarized light-scattering spectroscopy‖, Nature Medicine, 7, 1245-1248, 2001).

[5] Gvon Laszewski et al., ―Real-time Analysis, Visualization, and Steering of Tomography Experiments at Photon Sources‖, Proc. 9th SIAM

Conf. on Parallel Processing for Scientific Computing, Apr 1999.

[6] Smallen S., Casanova H. and F. Berman, ―Applying Scheduling and Tuning to On-line Parallel Tomography‖, Prof. of Supercomputing,

Denver, Nov 2001.
[7] Smallen S. et al., ―Combining Workstations and Supercomputers to Support Grid Applications: The Parallel Tomography Experience‖, 9th

Heterogeneous Computing Workshop, May 2000.

[8] Apostolico A. et al, ―Requirements for Grid-Aware Biology Applications‖, DataGrid WP10 Workshop, DataGrid-10-D10.1-0102-3-8, Sept
2001, http://marianne.in2p3.fr/datagrid/wp10

http://www.ijircce.com/

 ISSN(Online): 2320-9801

 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 10, October 2014

Copyright to IJIRCCE www.ijircce.com 6280

[9] Chervenak, I. Foster, C. Kesselmann, C. Salisbury, S. Tuecke, ―The Data Grid: Towards an Architecture for the Distributed Management and

Analysis of Large Scientific Datasets‖, to appear, Journal of Network and Computer Applications, 23(3) p187-200 July 2000.
[10] Hoschek W., Jaen-Martinez J., Samar A., Stockinger H. and K. Stockinger, ―Data Management in an International Data Grid Project‖,

IEEE/ACM Intl. Workshop on Grid Computing (Grid’2000), Dec. 2000.

[11] Plank J, Beck M., Elwasif W., Moore T., Swany M. and Wolski R., ―The Internet Backplane Protocol: Storage in the Network‖, Network
Storage Symposium (NetStore), Seattle, WA 1999.

[12] Bester J., FosterI., Kesselman C., Tedesco J. and Tuecke S., ―GASS: A Data Movement and Access Service for Wide Area Computing

Systems‖, Proc. 6th Workshop on I/O in Parallel and Distributed Systems, May 1999.
[13] Henderson R. and Tweten D., ―Portable Batch System: Requirement Specification‖, Technical Report, NAS Systems Division, NASA Ames

Research Center, Aug. 1998.

[14] Litzkow M., Livny and Mutka M. W., ―Condor: a Hunter of Idle Workstations‖, Proc. 8th Int. Conf. on Distributed Computing Systems, pp104-
111, June 1988.

[15] Thain D., Basney J., S-C. Son, and Livny M, ―The Kangaroo Approach to Data Movement on the Grid‖, Proc. 10th Intl. Symp. on High

Performance Distributed Computing (HPDC), pp325-333, Aug. 2001.
[16] White, Grimshaw A, and Nguyen-Tuong, ―Gridbased File Access: the Legion I/O Model‖, in Proc. 9th IEEE Int. Symp. on High Performance

Distributed Computing (HPDC), pp165-173, Aug 2000.

[17] White, Walker M, Humphrey M., Grimshaw A., ―LegionFS: A Secure and Scalable File System Supporting Cross-Domain High-Performance
Applications‖, Proceedings of Supercomputing (SC), Nov 2001.

[18] Allcock A, Bester J., Bresnahan J., Chervenak A., Foster I., Kesselman C., S. Meder, V. Nefedova, D. Quesnel, S. Tuecke. Secure, Efficient

Data Transport and Replica Management for High-Performance Data-Intensive Computing, IEEE Mass Storage Conference, 2001.
[19] Callaghan B., NFS Illustrated, Addison-Wesley, ISBN 0-201-32570-5, 2002.

[20] Morris J., Satyanarayanan M., Conner M., Howard J., D. Rosenthal and F. Smith, ―Andrew: A Distributed Personal Computing Environment‖,

Communications of the ACM, 29(3) pp184-201, March 1986
[21] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, D. Steere, ―Coda: A Highly Available File System for a Distributed

Workstation Environment‖, IEEE Transactions on Computers, 1990, 39(4), 447-459.

[22] S. Adabala, V. Chadha, P. Chawla, R. Figueiredo, J. Fortes, I. Krsul, A. Matsunaga, M. Tsugawa, J. Zhang, M. Zhao, L. Zhu, and X. Zhu.

―From Virtualized Resources to Virtual Computing Grids: The In-VIGO System‖, to appear, Future Generation Computing Systems, special

issue, Complex Problem-Solving Environments for Grid Computing, David Walker and Elias Houstis, Editors.

[23] Figueiredo R, Dinda P. and Fortes J., ―A Case for Grid Computing on Virtual Machines‖, Proceedings of the 23rd International Conference on
Distributed Computing Systems (ICDCS), May 2003

[24] Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. Lam and M. Rosenblum, ―Optimizing the Migration of Virtual Computers‖, Proceedings of the

5th Symposium on Operating Systems Design and Implementation, 2002.
[25] Figueiredo R. J., ―VP/GFS: An Architecture for Virtual Private Grid File Systems‖. In Technical Report TR-ACIS- 03-001, ACIS Laboratory,

Department of Electrical and Computer Engineering, University of Florida, 05/2003.

http://www.ijircce.com/

	page5
	page7
	page9
	page11
	page13
	page15

