ABSTRACT: The bi-directional discharges from thunderclouds corresponding to numerous splendid mesospheric discharges known as transient luminous phenomena are considered at length. The quasi-static electric field model of sprites with the formation of a giant parallel plate capacitor by positive ionosphere and negative shielding layer is examined.

KEYWORDS: TLE, quasi static electric field, mesospheric electron density

I. INTRODUCTION

The complex charges build up with time developed in thunderstorms leads to both upward and downward lightning discharges. These discharges are occasionally associated with Optical emissions commonly called Transient Luminous Events (TLEs), identified as sprites, elves, jets, blue starters, etc. and are usually associated with thunderstorms rousing at high altitudes in the Earth’s atmosphere [1-4]. Amongst TLEs, sprites are frequently observed phenomena. Sprites, possessing huge amount of charge, are induced by positive cloud-to-ground (+CG) lightning strokes. Blue jets, on the other hand, consisting of leaders and a return stroke are discharges propagating upwards into the stratosphere from the top of the cloud like the same way of that of the lightning but they may or may not be associated with cloud to ground lightning activity whereas, Elves, another category of TLE, are concentric rings of optical emissions escaping horizontally outwards at the bottom edge of ionosphere, formed by the electromagnetic pulse radiated by the cloud-to-ground discharge current [5-9].

II. TRANSIENT LUMINOUS EVENTS

Transient Luminous Events (TLEs) are the optical signature of energetic processes in the upper atmosphere, of which sprites are the best known [10]. Sprites are short lived (a few ms), large luminous discharges that appear in the altitude range ~40 to 90 km above vigorous thunderstorms. Sprites arise from the quasi-electrostatic (QE) field causing removal of a significant amount of charge in a large lightning stroke. Whereas sprites are initiated by the QE field above a large lightning discharge, elves are the optical signature of the interaction between the lightning electromagnetic pulse and the lower atmosphere. Sprites are associated with +CG lightning discharges which lower positive charges from a cloud to the ground. Blue jets are discharges propagating upwards into the stratosphere from cloud tops in a similar way to classical lightning, consisting of leaders and a return stroke. They may or may not be associated with cloud to ground lightning activity [11]. Elves are concentric rings of optical emissions propagating horizontally outwards at the bottom edge of ionosphere at ~ 90 km altitude [12], which are caused by the electromagnetic pulse radiated by the CG discharge current of CG lightning of either polarity [13].Gigantic jets seem to be a discharge where a blue jet triggers a sprite, creating electrical breakdown of the atmosphere from the thunderstorm clouds directly up to the bottom of the ionosphere [14-16]. Lightning discharges radiate intense electromagnetic pulses ~ 20 GW peak power for ~ 1 ms to ~ 1 s duration as measured by electric and magnetic sensors on the ground or in space [17]. Table I illustrates a comparative study of the characteristics of various Transient Luminous Events [2, 18-19].
A COMPARATIVE STUDY OF THE CHARACTERISTICS OF TRANSIENT LUMINOUS EVENTS

<table>
<thead>
<tr>
<th>Type of TLEs</th>
<th>Sprites</th>
<th>Elves</th>
<th>Blue jets</th>
<th>Blue starters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>Red</td>
<td>Red</td>
<td>Deep Blue</td>
<td>Deep Blue</td>
</tr>
<tr>
<td>Minimum altitude in km</td>
<td>50</td>
<td>75</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Maximum altitude in km</td>
<td>90</td>
<td>105</td>
<td>40-50</td>
<td>25.5</td>
</tr>
<tr>
<td>Width in km</td>
<td>25-50</td>
<td>100-300</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Span in ms</td>
<td>5-300</td>
<td><1</td>
<td>~250</td>
<td>100s ms</td>
</tr>
<tr>
<td>Spatial features</td>
<td>Top diffuse, bottom structured</td>
<td>Diffuse</td>
<td>Structured</td>
<td>Diffuse</td>
</tr>
<tr>
<td>Apparent Motion</td>
<td>Top upward, bottom downward</td>
<td>Lateral expansion</td>
<td>Upward</td>
<td>Downward</td>
</tr>
<tr>
<td>Association with lightning</td>
<td>Positive CG</td>
<td>Intense positive CG</td>
<td>often follow blue starters</td>
<td>Intense negative CG lightning</td>
</tr>
<tr>
<td>Time of onset</td>
<td>3-30 ms after lightning onset</td>
<td><500 ms after lightning onset</td>
<td>Quiet periods</td>
<td>Quiet periods</td>
</tr>
<tr>
<td>Avg. Energy /events (MJ's)</td>
<td>22</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global occurrence rate (events/min)</td>
<td>~1</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy deposition rate (MJ's/min)</td>
<td>22</td>
<td>1370</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recent observations show that early VLF amplitude perturbations for 90% cases were associated with + CG discharges which triggered sprites [20-23]. On the other hand numerous + GG and – CG discharges which did not trigger sprite were seldom associated with amplitude perturbations.

III. THE QUASI-STATIC ELECTRIC FIELD MODEL OF SPRITES

The quasi-static electric field model of sprites is outlined below.

Figure 1a) describes that the cloud charges up before the lightning discharge including a negative shielding layer, b) the positive CG removes positive charge, keeping the negative shielding layer for a longer time, and c) Giant parallel plate capacitor with positive ionosphere and negative shielding layer.

Figure 1a) describes that the cloud charges up before the lightning discharge including a negative shielding layer while Figure 1b) describes how the positive charge is removed by +CG discharges, which in turn keep the negative shielding layer for a long time. The negative shielding layer persists even after the discharge causing polarization in the atmosphere and a quasi-static E-field. This can be compared to a giant parallel plate capacitor as illustrated in Figure 1c). This strong E-field is responsible for the electrical breakdown and eventually produces the sprites.
IV. EFFECTS ON MESOSPHERIC ELECTRON DENSITY DUE TO TLE

The wide spectrum of electromagnetic waves generated during lightning discharges couple the lower atmosphere with the ionosphere/magnetosphere. Transient events like sprites are short-lived (a few ms), large luminous discharges that appear in the altitude range ~40 to 90 km above large thunderstorms. Sprites arise from the quasi-electrostatic (QE) field resulting from removal of a significant amount of charge in a large lightning stroke. Terrestrial gamma rays and runway electrons are noticed at a height of about 50 km from Earth’s surface. Positions of red sprites, ELVES, and blue jet are also the mysterious phenomena coupling the troposphere with the ionosphere [24-26]. The variation of electron density due to all these transient events reported at different parts of the globe when critically examined exhibit a variation of density with altitude as illustrated in Figure 2.

![Figure 2 Variation of electron density with altitude related to luminous events](image-url)

Observation of repeated sprites occurring at the same location, it is observed that the high altitude plasma associated with a sprite or ELVE could exist for nearly 2 to 5 minutes [27-29]. Since the occurrence rate of ELVEs is much higher than those for the other TLEs, only the free electron contribution of ELVEs to the lower ionosphere is considered.

Mende et al. [30] reported that the free electron density inside an ELVE can be eminent by more than 100%. The fractional local electron density change is defined as

\[
\mu_{\text{local}} = \frac{\frac{V_{\text{local}} \Delta n_e}{\tau_{\text{life time}}}}{N_e} \tag{1}
\]

where \(n_e \) is the mean nighttime free electron density \(\Delta n_e \) is the increase of the free electron density in an ELVE [103], and \(V_{\text{local}} \) is the volume between 80 km and 90 km above the region of observation

The ambient electron density \(N_e \) at altitude \(h \) is

\[
N_e(h) = 1.43 \times 10^7 e^{[0.15/\text{km}]/h^2} [e(\beta - 0.15/\text{km})(h - h')] \text{cm}^{-3} \tag{2}
\]

For \(h' = 85 \text{ km} \) and \(h' = 100 \text{ km} \) the variation of electron density with \(\beta = 0.5 \) and \(\beta = 1 \) for different altitudes is depicted in Figure 3. From the figure it is clear that the electron density for tropical countries is greater initially but over 80-100km it is greater for non-tropical countries.
The study of high altitude discharges is very useful for energy transfer between lower and upper atmosphere [31-32]. In this paper, we have summarized certain aspects of electrical discharges in thunderstorms and associated phenomena. Both the evolution and electrification of thunderstorms are briefly discussed. The bidirectional discharges from thunderclouds correspond to several magnificent mesospheric discharges (TLEs) phenomena. Observations show an asymmetry in CG discharges which generate sprites; negative CG discharges are rarely associated with sprites. The upward discharge creates a conducting path in the upper atmosphere so that the role of sprites and TLEs in the global electric circuit becomes important. The electric fields established in the mesosphere following a lightning discharge are not properly understood, and the relaxation time scale of quasi-electrostatic fields and its dependence on the ambient parameters of the medium are not well known. A complete understanding of the electric fields generated during intra-cloud, cloud-to-cloud, cloud-to-ground and cloud-to-ionosphere discharges remain a problem which requires both experimental and theoretical modeling efforts. Thunderstorm electrification process and downward lightning discharges play a significant role in the Earth’s climate. They also couple the troposphere to higher regions of the atmosphere and to the ionosphere and magnetosphere.

V. DISCUSSION

REFERENCES

Mika, A., et al., \textit{Early VLF perturbations observed in association with elves}, Annales Geophysicae, 24, 2179-2189, 2006

BIOGRAPHY

A. Dan, M.Sc in Physics is presently working as a Lecturer in the Department of Physics in B.P.C Institute of Technology, Krishnagar.

D. Chaudhuri completed her M. Tech degree in Electronics & Communication Engineering and is working as the Assistant Professor in the Department of Electronics & Communication Engineering, Modern Institute of Engineering &Technology.

Dr. Atanu Nag is working as the Assistant Professor in the Department of Physics, Modern Institute of Engineering &Technology. He has published more than 25 papers in International Journals and attended many conferences.