e-ISSN: 2320-7949 and p-ISSN: 2322-0090

All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Research Article Open Access

Effect of Bacterial Decontamination in SD Rats Peri-Implantitis Model by 808 nm Diode Laser Irradiation

Abstract

Peri-implantitis is an inflammatory condition that affects soft tissues and alveolar bone adjacent to dental implants. This condition leads to agitation or even loss of implants. Bacterial infection caused by contamination of implant site is one of the known causes of peri-implantitis. Infective bacterial agents include Aggregatibacter actinomycetemcomitans, Capnocytophaga sp., and Fusobacterium nucleatum. Various noninvasive methods have been evaluated for the elimination of these contaminants. The present study investigated the efficacy of diode laser irradiation for decontamination of implant surfaces and adjacent areas in a peri-implantitis model. Twelve-week-old Sprague-Dawley rats (minimum weight, 300 g) were divided into a control and three implantation groups. Sandblasted and acid-etched titanium screws (SLA-TS; 1.2 × 4.0 mm) were implanted in the hard palate of rats of the three implantation groups: uninfected SLA-TS implant, peri-implantitis infection, and laser-treated peri- implantitis infection groups. Peri-implantitis in inflamed soft tissues and alveolar bone was treated by irradiation with 808 nm diode laser in the continuous mode for 15 s at 0.5 W. The degree of contamination on implant surfaces was evaluated by scanning electron microscopy (SEM), and the proliferation of periodontopathic bacteria in each group was analyzed by quantitative-polymerase chain reaction. The efficacy of laser treatment was evaluated in terms of increase in temperature of the mouth, surface changes of implants, and decrease in bacterial load. Our results indicated that laser irradiation resulted in a significant decrease of periodontopathic bacterial titer, without causing denaturation of implant surfaces.

Sung-Ho Lee, Wei-Fung Jin, Ryun-Kyung Kim, NaRi Seo, Kyung Won Ju, Ho-Kyung Lim, Soo-Hwan Byun, Young-Joon Lim, Soung-Min Kim, Jong-Ho Lee 

To read the full article Download Full Article | Visit Full Article