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ABSTRACT: In a computer network, the transmission of data is based on the routing protocol which selects the best 
routes between any two nodes. Different types of routing protocols are applied to specific network environment as one 
routing protocol which seems to be efficient in one network seems to be inefficient in a different network especially 
when the number of nodes varies. RIP (Routing Information Protocol) is one of the oldest routing protocols still in 
service. Hop count is the metric that RIP uses and the hop limit limits the network size that RIP can support. OSPF 
(Open Shortest Path First) is the most widely used IGP (Interior Gateway Protocol) in large enterprise networks. 
EIGRP (Enhanced Interior Gateway Routing Protocol) is Cisco's proprietary routing protocol. This paper analyses 
which computer routing protocol performs the most efficiently. Each protocol is built around a single source shortest 
path algorithm. MATLAB was used to construct complex scenarios and determine which algorithms are best for graphs 
of variable lengths. 
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I. INTRODUCTION 
 

Networks have been used in a variety of applications for hundreds of years. In the scope of mathematics, we can 
visually depict these networks better through graphs. A graph is a representation of a group or set of objects, called 
vertices, in which some of the vertices are connected by links, also known as edges. The study of these graphs is often 
referred to as Graph Theory. Fig.1 and Fig. 2 are examples of simple graphs.The example used in Fig. 1 is known as an 
undirected graph, a graph in which the edges have no orientation. A more practical example of an undirected graph 
would be two people shaking hands. Person A is shaking hands with person Band at the same time, person B is shaking 
hands with person A. 

 
                                                Fig. 1                                                                                    Fig. 2 
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Fig. 2 shows a directed graph, or digraph. A digraph has edges that have direction and are called arcs. Arrows on the 
arcs are used to show the flow from one node to another. For example, from Fig. 2, vertex 1 can move to vertex 2, but 2 
cannot move to 2. Often times, graphs will belabelled with a number on the link. This means that the graph is weighted 
and this number denotes the cost it takes to get from one vertex to the next.There are many topics being researched 
today related to Graph Theory. However, the context of this paper will be focused on Shortest Path Algorithms (SPAs). 
More specifically, we will discuss how SPAs are used in current computer networking technology.A Shortest Path 
Algorithm is a method that will find the best or least cost path from a given node to another node. Two of the most 
common SPAs discussed in graph theory today are the Bellman-Ford algorithm and Dijkstra’salgorithm. Computer 
networking relies deeply on graph theory and shortest path algorithms. Without SPAs, network traffic would have no 
direction and not know where to go. It is also very important that network traffic does not loop. 
An Interior Gateway Protocol is a routing protocol that is used to share routing information within a local Autonomous 
System (AS). Examples of these routing protocols are Routing Information Protocol (RIP), Open Shortest Path First 
(OSPF) and Enhanced Interior Gateway Routing Protocol (EIGRP). Each of these algorithms uses a unique method to 
find shortest paths between network routes. Also, one of the most unique distinctions between each routing protocol is 
how each chooses their edge weights. RIP considers the cost from vertex to vertex to all be equal. Therefore, the 
shortest path is determined solely on the shortest number of nodes used to get to the destination. OSPF uses a very 
simple calculation to find its edge weight. Its cost is found by taking one hundred divided by the bandwidth in units of 
Megabits per second. EIGRP uses a more complex formula in calculating weight but still does not require much 
overhead. The cost metric can be found by using the following formula (the K variables are predefined and a default 
value is most often used). 
 
[{K1×BW+(k2×BW)/(256-Load)+k3×Delay}×k5/(k4+Reliability)] ×256   ,where BW=BandWidth 
From the information provided above, it is clear that each algorithm is unique. I studied each of these routing protocols 
in depth, and analysed the efficiencies of each and worked to find which one is best. It is well known that each of these 
routing protocols were built around a previously discovered graph theory algorithm. For example, OSPF was created 
knowing that Dijkstra’s algorithm would be used in finding the shortest path. There have been several revisions of this 
protocol since its release, but those changes were made to accommodate for new technology.Overall, the method used 
to find the shortest path has remained the same for years. There are many times where multiple routing protocols find a 
shortest path to be the same path as another protocol. Therefore, I define efficiency to be equal to the time it takes for 
an algorithm to actually calculate the shortest path. Given the size of today’s networks, the process of calculating 
routing paths can be exhausting. Any time a path is modified or changed, the algorithm must be ran again on the 
network to determine if a new shortest path is available. For example, a cable between two routers being cut would 
represent an edge being removed from a graph because there is no longer a connection between routers, or vertices. 
Similarly, when a router is taken out of a network, this represents a vertex being removed from the graph. From past 
experience in computer networking, the arguments posed on choosing a particular routing protocol are only related to 
which protocol is best for the type of equipment or connections that are being used. It should also be known that this 
paper will focus on undirected graphs. In the area of computer networking, it is not practical to say that network traffic 
can flow in one direction across a given path, but not the other direction. Therefore, directed graphs will be excluded 
from most of the research topics. I will show my analysis of the shortest path algorithms. Then, I will move in to the 
experimental portion and explain, in detail, how I used computer software to find the results. 

II. RELATED WORK 
 

Shortest Path Algorithms are used in many applications of everyday life. Consider using computer navigation software 
to obtain directions to a place you have never driven to before. In most cases, there are many paths one could take in 
order to arrive at that location. This software creates a graph with the vertices representing a physical location and the 
edges which represent the road that connects two locations. If there is not a road between locations, then there is not an 
edge in the graph. Next, a weight is associated with each edge. In this example, the primary metric used for weight is 
distance. However, other factors in this example are considered when assigning a weight, or cost, to an edge, such as 
traffic and average speed of vehicles on a given road. 
Path finding algorithms date back to the late 1800s. “Path finding, in particular searching for a maze, belongs to the 
classical graph problems, and the classical references are Wiener [1873], Lucas [1882], and Tarry [1895]. They form 
the basis for depth-first search techniques”[1]. However, it wasn’t until the 1950s that shortest path algorithm 
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development began to rise. This time period marked a new era of complex network applications. For example, 
telephone networks were growing significantly larger, creating a demand for a more efficient process to find the 
shortest path to the end caller. Before this period, call routing had to be completed manually by telephone operators. 
Therefore, if a particular call path was broken, it was not automatically intuitive as to which backup path should be 
taken. While several mathematicians and computer scientists contributed to this research, two major contributions were 
Edsger Dijkstra and Dijkstra’s algorithm in 1956 and also the Bellman-Ford algorithm, developed by Lester Ford, Jr. 
and Richard Bellman in 1956 and 1958 respectively. The Bellman-Ford algorithm was also published in 1957 by 
Edward F. Moore and is sometimes referred to as the Bellman-Ford-Moore algorithm. Computer networks began to 
evolve throughout the late 1950s and 1960s. The majority of these networks were initially used in military operations 
for top secret data transfer and also for radar system Semi-Automatic Ground Environment (SAGE) [1] . This created a 
great opportunity for computer networking in the corporate world as well. American Airlines was the first American 
company to fully utilize a complex network to connect mainframe systems for the use of Semi-automated Business 
Research Environment (SABRE). 
 
As corporate networks began to grow, it became very difficult to manually manage every connection between sites. 
Configuring routers to direct traffic to a fixed location at all times was completely inefficient. Routers needed the 
ability to dynamically calculate the best and shortest path quickly. This process is referred to as dynamic routing. The 
first major dynamic routing protocol, Routing Information Protocol (RIP), was implemented in 1988. “This algorithm 
has been used for routing computations in computer networks since the early days for the ARPANET” (RFC 1058). 
RIP runs as a software component on routers based on the Bellman-Ford algorithm. Each routing protocol uses a 
different method in calculating the cost between routers. RIP determines that the hop count is the routing metric. RIP is 
still commonly used in networks today. The second major dynamic routing protocol is called Open Shortest Path First 
(OSPF). This protocol is current on version 2, which is defined by RFC 2328 and published by the Internet Engineering 
Task Force (IETF) in 1998. Similarly, OSPF exercises a previously defined shortest path algorithm, Dijkstra’s 
Algorithm. OSPF calculates determines the bandwidth between two routers and then assigns that bandwidth amount in 
megabits per second to the edge cost. This protocol is also implemented frequently in corporate networks around the 
world today. 

III. SHORTEST PATH ALGORITHMS 
 
Now I will define each shortest path algorithm. Take a weighted digraph G = (V, E). I denote the letter G as the name 
of the graph, V to be a representation of all the vertices in the graph, and E to contain all the edges between vertices. 
Given a source and destination vertex, it can be said that a sequential list of vertices which connect the source and 
destination can be called a path, where 
  .݇ݒ→⋯ → 2ݒ → 1ݒ = 
 The edge weights can be given by a function 
  .R → ܧ∶ݓ
Therefore, the weight can be written as follows: 
∑ = () vିଵ)ݓ

ୀଵ i, vi+1) 
 After taking the sum of edges used for each path, the path that has the smallest sum can be known as the shortest path. 
We can now define the shortest path weight to be  
  .{ݒݐݑ݉ݎℎ݂ݐܽ :()ݓ}min = (ݒ ,ݑ)  
A path can have an infinite cycle. However, if we choose an algorithm that will not allow a vertex to be contained in a 
path more than once, then it will not be infinite (assuming the graph contains a finite number of vertices)[4]. Before 
analysing the frequently used shortest path algorithms, it is important to examine the worst case scenario. This process 
of finding every applicable path in the graph, and then finding the smallest sum of those edges in a particular path is 
known as the Brute-Force algorithm.  
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From Fig. 3 illustrates two possible paths from vertex A to D. Those paths are A-C-D and A-B-C-D. The Brute-Force 
algorithm will first find all paths without considering the edge weights. Once all paths are found, the algorithm will 
then find the shortest path. In simple networks, there is not usually a problem with using the Brute-Force method. 
However, as the graph grows larger, the Brute-Force requires many more computations. Now, it will be helpful to look 
at the Single-Source Shortest Path algorithms[7]. These are algorithms that from any given source vertex ݏ∈ܸ they will 
find the shortest path (ݒ ,ݏ), ∀ݒ∈ܸ. To date, there is not an efficient algorithm that can find the shortest path from one 
vertex to another specific vertex without taking into consideration the other vertices in the graph[3]. After the distance 
from the source to the other vertices has been calculated, it will be easy to back track to find the path. Dijkstra’s 
Algorithm is the most common single-source shortest path algorithm. It will require three inputs (G, w, s), the graph G 
(containing vertices and edges, the weights w, and the source vertex s. Dijkstra’s Algorithm is outlined as follows: 
  (ݏ ,ݓ ,ܩ) ܽݎݐݏ݆݇݅݀
  0 = [ݏ] 
  {ݏ} − ܸ∋ݒℎܿܽ݁ݎ݂
 ∞ = [ݒ]݀݀
ܵ = ∅ 
ܳ = ܸ 
 ∅ ≠ ℎ݈݅݁ܳݓ
 (ܳ)݊݅ܯݐܿܽݎݐݔܧ = ݑ݀
  {ݑ} ∪ܵ = ܵ
 {ݑ} ݆݀ܽ∋ݒℎܿܽ݁ݎ݂
 (ݒ ,ݑ)ݓ + [ݑ]݀< [ݒ]݂݀݅݀
 (ݒ ,ݑ)ݓ + [ݑ]݀ = [ݒ]ℎ݁݊݀ݐ
 
 Dijkstra’s algorithm must first initialize its three important arrays. First, the array S contains the vertices that have 
already been examined or relaxed. It first starts as the empty set, but as the algorithm progresses, it will fill it with each 
vertex until all are examined. Then, the distance array d[x] is defined to be an array of the shortest paths from s to x, or 
also denoted (ݔ ,ݏ) ݓℎ݁݊ݔ∈ܵ. Finally, Q is simply the data type used to form the list of vertices. In this case, we call it 
a priority queue. Even though Dijkstra’s algorithm appears to be very efficient, it must only consider non negative cost 
values on the edges, as having a negative value can result in an unwanted loop. However, this is not an immediate 
concern from our study, because in each of our networking protocols, there cannot be a negative metric value.  
 
After the initialization portion of the algorithm is complete, I then move into the shortest path calculation. The function 
will have to run as long as it takes to relax each edge for each vertex. Next, I chose to use “ExtractMin” because I need 
a method to choose a new vertex to examine. Extracting the vertex corresponding to the least shortest path so far, will 
guarantee choosing a new unique vertex. Every edge that connects to this newly chosen vertex u must be compared. If 
the adjacent vertex v currently has a distance to the source that is greater than the distance to u plus the cost of the 
distance between u and v, then update the distance to v [5]. After completion of this step, I now have an array d[x] that 
holds the value for the shortest distance for from the source to each of the vertices in the graph.  
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Now I will analyse Bellman-Ford algorithm, which can be seen below. 
 (ݏ ,ݓ ,ܩ) ݀ݎ݂݈݈ܾ݊ܽ݉݁
  0 = [ݏ] 
 {ݏ} − ܸ∋ݒℎܿܽ݁ݎ݂
  ∞ = [ݒ]݀݀
 
 1 − |ܸ| ݐ 1 = ݅ݎ݂
 ܧ∋ (ݒ ,ݑ) ℎ݁݀݃݁ܿܽ݁ݎ݂݀
 (ݒ ,ݑ)ݓ + [ݑ]݀< [ݒ]݂݀݅݀
 (ݒ ,ݑ)ݓ + [ݑ]݀ = [ݒ]ℎ݁݊݀ݐ
 
The Bellman-Ford algorithm takes the same approach for initialization as Dijkstra. It will also accept the graph to be 
input as a square matrix. Bellman-Ford is known to be fairly simple but not run as efficiently. This shortest path 
algorithm will be controlled by a “for-loop” that runs |V| - 1 iterations where |V| is equal to the number of vertices in 
the network. Bellman-Ford will now run the same relaxation test as Dijkstra for each edge in the graph. Upon 
completion of each relaxation, the shortest path will be found [6]. I can now move to the experimental test where I can 
code these algorithms and test their results. 

IV. SIMULATION RESULTS 
 

Before jumping into the analysis of these algorithms, it is important for me to choose a mathematics software that best 
fit. I used MATLAB because it is matrix-oriented and seemed to be the most efficient for making fast calculations. In 
order to input data into the MATLAB functions, I had to have some sort of method in which to describe the graphs. I 
choseto input the graph in the form of a square matrix. The matrix will always be of n x n dimension where n is equal 
to the number of vertices in the graph. Each row will represent the vertex from which we are traveling. Each column 
will represent the vertex to which we are traveling to [2]. The matrix G is a representation of the graph with three 
vertices. Vertex A corresponds to row and column 1, B to row and column 2, etc. Matrix G shown is the matrix 
representation of the graphgraph in Fig. 4. 

 
It can now be seen that the cost from A to B will correspond to row 1, column 2 in the matrix. Therefore, [1,2] is equal 
to 1, [1,3]ܩ is equal to 2, and [2,3]ܩ is equal to 3. Also note that all of the elements in the diagonal of the matrix are 
equal to 0. This is a result of describing the cost from one node to itself, which is clearly zero. Also, the matrix should 
be symmetric across the diagonal (GT=G). We decided earlier that our graphs should be undirected. The matrix being 
symmetric would imply (ݕ ,ݔ) = (ݔ ,ݕ) ݓℎ݁݊∀ܩ∋ݕ ,ݔ. If this were not the case, then the graph would be directed. The 
MATLAB functions are all run from a driver program called driver.m. This program allows us to not have to enter each 
command manually. Given the amount of variables, the driver function also allows us to not have to enter each variable 
for every call of the function. Also, graphs with a very large number of vertices take a large amount of time to 
calculate. The driver function allowed us to run multiple tests at one time with minimal time in between each function 
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call. The next large task faced was creating random graphs. I created a function named buildMatrix() to build our 
graph. This function runs in (݊2) time, where n equals the number of nodes. 

Initially, the function creates n by n matrix with random numbers between 0 and 1 as elements. Obviously, we do not 
want a completely random matrix. As previously discussed, we need to have the elements on the diagonal of the matrix 
equal to zero. Also, the elements need to follow the symmetric property previous discussed, (ݕ ,ݔ) = (ݔ ,ݕ). Therefore, 
the “If-Then” command controlled by the nested loop analyses if the element is on the diagonal. If it is, then the 
function sets that value equal to zero. If the element is not on the diagonal, it will set the corresponding element on the 
other side of the diagonal such that (ݕ ,ݔ) = (ݔ ,ݕ). It was not practical to have each element in the graph, excluding the 
diagonal, set to a value greater than zero. If each value was greater than zero, this would imply that the graph is 
complete, or fully meshed. “A complete graph is a simple undirected graph in which every pair of distinct vertices is 
connected by a unique edge. Fig. 5 is an example of a complete graph with six vertices. 

 
In the comparison of graph theory related to computer networking, it is not feasible to state that a network router is 
connected to every other router in the network. Therefore, a more realistic model would state that 30% of all routers are 
connected to each other. Conclusively, the last step of the buildMatrix() sets 70% of the elements equal to zero, or not 
connected. Our randomly generated matrix is now ready to be put to the test. We will attempt to use each n x n matrix 
for each algorithm. This may not be possible for a large n in the brute force algorithm. Brute-Force, Dijkstra’s 
Algorithm and Bellman-Ford algorithm are implemented based on the pseudo code from the previous chapter and may 
be referenced in Appendix A. Within the driver.m program, each algorithm is compiled once for every number of 
vertices from 1 to 700. Before the number of vertices is increased, a new random square matrix is created. This allows 
the SPA’s to calculate for a new graph topology each time. 
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The “tic-toc” pre-defined MATLAB function is used each time to determine the time taken for each algorithm to run. 
The time recordings are stored in to a variable called Results. After the driver.m program has completed, we imported 
these values into a Microsoft Excel spreadsheet in order to easily create graphs and mine the data easily.  
Fig. 6&Fig. 7 are line graphs from runtimes of both major SPA’s. Fig. 6 exhibits 1 to 450 vertices while Fig. 7 shows 
runtimes for 1 to 700 vertices. After running the two single-source shortest path algorithms, it can be seen that the 
Bellman-Ford algorithm is more efficient than Dijkstra’s algorithm until the number of vertices in the graph reach 
around 425. From this point, Dijkstra’s algorithm shows to be much more efficient as the number of vertices approach 
infinity. 
 
Time in seconds 
No. of Vertices Bellman-Ford Dijkstra

2 0 0
15 0 0
28 0 0
41 0 0
54 0 0.02
67 0 0.04
80 0 0.05
93 0 0.06

106 0.02 0.07
119 0.03 0.08
132 0.04 0.09
145 0.05 0.1
158 0.06 0.11
171 0.07 0.12
184 0.08 0.15
197 0.08 0.17
210 0.09 0.19
223 0.1 0.2
236 0.11 0.25
249 0.15 0.27
262 0.16 0.3
275 0.2 0.32
288 0.22 0.35
301 0.26 0.37
314 0.3 0.4
327 0.33 0.44
340 0.37 0.5
353 0.4 0.53
366 0.47 0.56
379 0.5 0.64
392 0.54 0.66
405 0.6 0.69
418 0.7 0.7
431 0.76 0.74
444 0.87 0.8
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Time in seconds 
No. of vertices Bellman-Ford Dijkstra

2 0 0
21 0 0
40 0 0
59 0 0
78 0 0
97 0 0

116 0 0.2
135 0 0.22
154 0.1 0.23
173 0.2 0.3
192 0.22 0.32
211 0.24 0.38
230 0.28 0.4
268 0.3 0.43
287 0.33 0.45
306 0.35 0.47
325 0.4 0.49
344 0.46 0.5
363 0.49 0.51
382 0.5 0.52
401 0.6 0.6
420 0.74 0.74
439 0.8 0.8
458 0.9 0.8
477 1.1 0.9
496 1.25 1
515 1.4 1.1
534 1.52 1.25
553 1.7 1.35
572 1.8 1.4
591 2.2 1.48
610 2.3 1.5
629 2.5 1.55
648 2.7 1.7
667 3 1.8
686 3.5 1.9
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V. CONCLUSION 
 

From the information provided in our Experimental data, it is obvious to see that the brute-force algorithm is not 
efficient. However, this was expected because every possible path was found without taking the cost into consideration. 
For very small networks, the brute-force algorithm might be a valid method. It is certainly the easiest for elementary 
graph theorist to comprehend, but it is not realistic to use this algorithm for very large numbers of vertices. The 
Bellman-Ford algorithm and Dijkstra’s algorithm proved to be much more efficient than brute-force, with Dijkstra 
proving to run in the least amount of time for very large networks. It appears that for complete, fully meshed networks, 
the Bellman-Ford algorithm actually ran faster than Dijkstra’s algorithm for networks of size 425 or less. However, 
Dijkstra showed to be considerably more efficient beyond networks with more than 425 vertices. As a general rule, 
network engineers are told to stay away from the routing protocols that use the Bellman-Ford algorithm. Again, these 
protocols are RIP and EIGRP, while OSPF runs Dijkstra’s algorithm. However, this studies show that for small and 
medium sized networks, EIGRP and OSPF calculate the shortest path in a relatively close amount of time. Therefore, it 
can be said that OSPF only needs to be chosen in very large networks. Otherwise, in most cases, EIGRP and OSPF are 
very similar in their efficiencies. 
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