

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2015

w*g*- Closed Sets in Topological Spaces

N. Balamani¹, A. Parvathi²

Assistant Professor, Dept. of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore, Tamil Nadu, India¹

Professor, Dept. of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women

University, Coimbatore, Tamil Nadu, India²

ABSTRACT: The aim of this paper is to introduce and study a new class of generalized closed sets called ψ^*g^* -closed sets in topological spaces using ψg - closed sets and ψ -closed sets. We analyse the relations between ψ^*g^* -closed sets with already existing closed sets. The class of ψ^*g^* -closed sets is properly placed between the class of ψ - closed sets and the class of $g^*\psi$ - closed sets and a chain of relation is proved as follows.

r-closed \rightarrow ψ -closed \rightarrow ψ *g*-closed \rightarrow g* ψ -closed \rightarrow ψ g-closed \rightarrow ψ g-closed \rightarrow gsp-closed

KEYWORDS: g-closed sets, ψ -closed sets, ψ g-closed sets and ψ *g*-closed sets

I. INTRODUCTION

Levine [7] introduced the concepts of generalized closed sets denoted by g-closed sets in topological spaces and studied their basic properties. Veerakumar [18] introduced and analysed ψ -closed sets in topological spaces. Veerakumar [22] introduced the concepts of $g^*\psi$ -closed sets using g-closed sets in topological spaces. Ramya and Parvathi [15] introduced a new concept of generalized closed sets called $\psi \hat{g}$ -closed sets and ψg -closed sets in topological spaces. Ramya even topological spaces. The purpose of this paper is to introduce a new class of generalized closed sets called ψ^*g^* -closed sets in topological spaces.

II. PRELIMINARIES

Throughout this paper (X, τ) represents non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) , cl(A) and int(A) denote the closure of A and the interior of A respectively.

Definition 2.1

A subset A of a topological space (X,τ) is called

- (i) Regular open set [16] if A=int(cl(A))
- (ii) Semi-open set [6] if $A \subseteq cl(int(A))$
- (iii) α -open set[14] if A \subseteq int(cl(int(A)))
- (iv) Pre-open set [12] if $A \subseteq int(cl(A))$
- (v) semi pre-open set [2] if $A \subseteq cl(int(clA))$

The complements of the above mentioned sets are called regular closed, semi closed, α -closed, pre-closed and semi pre-closed sets respectively.

The intersection of all regular closed subsets of (X, τ) containing A is called the regular closure of A and is denoted by rcl(A). Similarly scl(A)-semi closure of A, α cl(A) - α closure of A, pcl(A)-pre closure of A and spcl(A) - semi pre closure of A are defined.

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2015

Definition 2.2

A subset A of a topological space (X, τ) is called

(a) generalized closed set (g-closed) [7] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

- (b) semi-generalized closed set (sg-closed) [3] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) .
- (c) generalized α -closed set($g\alpha$ -closed) [8] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).
- (d) α -generalized closed set (α g-closed) [9] if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (e) generalized semi-pre -closed set (gsp-closed) [5] if spcl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(f) g^* -closed set[19] if cl(A) \subseteq U whenever A \subseteq U and U is g-open in (X, τ).

(g) \hat{g} - closed set [20] if cl(A) \subseteq U whenever A \subseteq U and U is semi-open in (X, τ).

(h) gp-closed set [10] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(i) g*p-closed set [21] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

(j) $\alpha \hat{g}$ - closed set [1] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .

- (k) αg^* -closed set [13] if cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).
- (1) sag * closed set [11] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g*-open in (X, τ) .
- (m) wg α -closed set [23] if α cl(int(A)) \subseteq U whenever A \subseteq U and U is α -open in (X, τ).
- (n) wag-closed set [23] if $\alpha cl(int(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .
- (o) ψ -closed set [18] if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ).
- (p) ψ g-closed set [15] if ψ cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).
- (q) $g * \psi$ -closed set [22] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .
- (r) $\psi \hat{g}$ closed set [15] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open in (X, τ) .
- (s) $\alpha \psi$ closed set [4] if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open in (X, τ) .

The complements of the above mentioned sets are called their respective open-sets.

Remark 2.3

r-closed(r-open) \rightarrow closed (open) $\rightarrow \alpha$ -closed(α -open) \rightarrow semi-closed(semi-open) $\rightarrow \psi$ -closed(ψ -open) \rightarrow semi pre-closed(semi pre-open).

III. $\psi^* g^*$ - Closed sets

Definition: 3.1 A subset A of a topological space (X, τ) is said to be $\psi * g * \text{-closed set}$ if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψg -open in (X, τ) .

The class of all ψ^*g^* -closed sets of (X,τ) is denoted by $\psi^*g^*C(X,\tau)$.

Definition: 3.2 A subset A of a topological space (X, τ) is said to be $g#\psi$ -closed set if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ψ -open in (X, τ) .

Preposition 3.3 Every closed set in (X, τ) is ψ^*g^* -closed but not conversely.

Proof: Let A be a closed set of (X, τ) . Let U be any ψg -open set containing A. By remark 2.3 every closed set is ψ -closed, $\psi cl(A) \subseteq cl(A) = A \subseteq U$. Therefore A is $\psi * g * - closed$.

Example 3.4 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then the subset $\{b\}$ is $\psi^* g^*$ -closed but not closed in (X, τ) . **Preposition 3.5** Every regular closed set in (X, τ) is $\psi^* g^*$ -closed but not conversely.

Proof: As every regular closed set is closed and by preposition 3.3 the proof follows.

Example 3.6 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $\{c\}$ is ψ^*g^* -closed but not regular closed in (X, τ) .

Preposition 3.7 Every α -closed set in (X, τ) is ψ^*g^* -closed but not conversely.

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2015

Proof: Let A be an α -closed set of (X, τ) . Let U be any ψg -open set containing A in X. Since A is α -closed, $\alpha cl(A) = A$ and by remark 2.3 every α -closed set is ψ -closed, $\psi cl(A) \subseteq \alpha cl(A) = A \subseteq U$. Therefore A is $\psi^* g^*$ -closed. **Example 3.8** Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a, b\}\}$. Then the subset $\{b, c\}$ is $\psi^* g^*$ -closed but not α -closed in (X, τ) . **Preposition 3.9** Every ψ -closed set in (X, τ) is $\psi^* g^*$ -closed but not conversely.

Proof: Let A be a ψ - closed set of (X, τ) . Let U be any ψ g-open set containing A in X. Since A is ψ -closed, ψ cl(A) = A. Therefore ψ cl(A) = A \subseteq U and hence A is ψ *g*-closed.

Example 3.10 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then the subset $\{a, c\}$ is ψ^*g^* -closed but not ψ -closed in (X, τ) .

Preposition 3.11 Every ψ^*g^* -closed set in (X, τ) is ψg -closed but not conversely.

Proof: Let A be a ψ^*g^* -closed set and U be any open set containing A in X. Since every open set is ψg -open and A is ψ^*g^* -closed, $\psi cl(A) \subseteq U$. Hence A is ψg -closed.

Example 3.12 Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{a, b\}\{a, b, c\}\}$. Then the subset $\{a, b, d\}$ is ψg -closed but not $\psi^* g^*$ -closed in (X, τ) .

Preposition 3.13 Every ψ^*g^* -closed set in (X, τ) is gsp- closed but not conversely.

Proof: Let A be a ψ^*g^* -closed set and U be any open set containing A in X. Since every open set is ψg -open and A is ψ^*g^* -closed, $\psi cl(A) \subseteq U$. For every subset A of X, $spcl(A) \subseteq \psi cl(A)$ and so $spcl(A) \subseteq U$. Hence A is gsp-closed.

Example 3.14 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a, b\}\}$. Then the subset $\{a\}$ is gsp-closed but not ψ^*g^* -closed in (X, τ) .

Lemma 3.15 Every \hat{g} -closed closed set in (X, τ) is ψg -closed.

Proof: Let A be a \hat{g} -closed set and U be any open set containing A in X. Since every open set is semi open and A is \hat{g} -closed, cl(A) \subseteq U. For every subset A of X, ψ cl(A) \subseteq cl(A) and so ψ cl(A) \subseteq U. Hence A is ψ g-closed.

Preposition 3.16 Every ψ^*g^* -closed set in (X, τ) is $\psi \hat{g}$ -closed but not conversely.

Proof: Let A be a $\psi * g *$ -closed set and U be any \hat{g} open set containing A in X. By Lemma 3.15 every \hat{g} -open set is ψg -open and A is $\psi * g *$ -closed, $\psi cl(A) \subseteq U$. Hence A is $\psi \hat{g}$ -closed.

Example 3.17 Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{a, b, c\}\}$. Then the subset $\{a, b, d\}$ is $\psi \hat{g}$ -closed but not $\psi * g *$ -closed in (X, τ) .

Lemma 3.18 Every g-closed set in (X, τ) is ψg -closed.

Proof: Let A be a g- closed set and U be any open set containing A in X. Since A is g- closed, $cl(A) \subseteq U$. For every subset A of X, $\psi cl(A) \subseteq cl(A)$ and so $\psi cl(A) \subseteq U$. Hence A is ψg -closed.

Preposition 3.19 Every $\psi^* g^*$ -closed set in (X, τ) is $g^* \psi$ -closed but not conversely.

Proof: Let A be a ψ^*g^* -closed set and U be any g-open set containing A in X. By **lemma 3.18** every g-open set is ψ^*g^* -closed, so $\psi^*(A) \subseteq U$. Hence A is $g^*\psi$ -closed.

Example 3.20 Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{a, b\}\}$. Then the subset $\{a, c, d\}$ is $g * \psi$ -closed but not $\psi * g *$ -closed in (X, τ) .

Preposition 3.21 Every ψ^*g^* -closed set in (X, τ) is $\alpha\psi$ -closed but not conversely.

Proof: Let A be a $\psi * g *$ -closed set and U be any α -open set containing A in X. Since every α -open set is ψg -open and A is $\psi * g *$ -closed, $\psi cl(A) \subseteq U$. Hence A is $\alpha \psi$ -closed.

Example 3.22 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{a, c\}\}$. Then the subset $\{a, b\}$ is $\alpha \psi$ -closed but not $\psi * g *$ -closed in (X, τ) .

Preposition 3.23 Every ψ^*g^* -closed set in (X, τ) is $g\#\psi$ - closed but not conversely.

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2015

Proof: Let A be a ψ^*g^* -closed set and U be any ψ -open set containing A in X. Since every ψ -open set is ψg -open and A is a ψ^*g^* -closed set, $\psi cl(A) \subseteq U$. Hence A is $g\#\psi$ -closed.

Example 3.24 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then the subset $\{a, b\}$ is $g\#\psi$ -closed but not ψ^*g^* -closed in (X, τ) .

Remark 3.25 The following diagram gives the dependence of ψ^*g^* -closed set with already existing various closed sets.

Where $A \rightarrow B$ represents A implies B.

Remark 3.26 The following examples show that ψ^*g^* - closedness is independent from pre-closedness, g-closedness, \hat{g} -closedness, gp-closedness, αg^* - closedness, αg^* - closedness.

Example 3.27 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $\{b\}$ is $\psi^* g^*$ -closed but not preclosed, g-closed, \hat{g} - closed, gp- closed, g^*p - closed, αg -closed, $\alpha \hat{g}$ - closed αg^* - closed, $s\alpha g^*$ - closed, $w\alpha g$ -closed and $wg\alpha$ -closed in (X,τ) .

Example 3.28 Let $X = \{a, b, c\}$ with $\tau = \{\phi, X, \{a\}, \{b, c\}\}$. Then the subset $\{a, b\}$ is pre-closed, g-closed, \hat{g} -closed, g^* -closed, αg^* -closed, αg^* -closed, $\alpha \alpha g^*$ -clo

Remark 3.29 The following examples show that $\psi * g *$ -closedness is independent from g^* -closedness.

Example 3.30 Let $X = \{a, b, c, d\}$ with $\tau = \{\phi, X, \{a\}, \{a, b, c\}\}$. Then the subset $\{a, b, d\}$ is g*-closed but not ψ^*g^* -closed and the subset $\{c\}$ is ψ^*g^* -closed but not g*-closed in (X, τ) .

REFERENCES

- [3] Bhattacharyya, P. and Lahiri, B.K., (1987), Semi-generalized closed sets in topology, Indian J. Math., Vol.29, pp. 376-382.
- [4] Devi,R.,Selvakumar,A. and Parimala,M. $\alpha \psi$ -closed sets in topological spaces.
- [5] Dontchev, J., (1995), On generalizing semi-pre open sets Mem. Fac. Sci. Kochi Univ. Ser.A. Math., Vol.16, pp.35-48.
- [6] Levine, N., (1963), Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, Vol.70, pp.36-41.
- [7] Levine, N., (1970), Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, Vol.19(2), pp.89-96.
- [8] Maki,H., Devi,R.,and Balachandran,K.,(1993), generalized α-closed sets in topology, Bull.Fukuoka Univ, Ed.,Part III., 42, pp.13-21.
- [9] Maki, H., Devi, R. and Balachandran, (1994), Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac.Sci. Kochi Univ. Ser.A, Math., 15, , pp.51-63.
- [10] Maki., H., Umehara, J. and Noiri, T.(1996), Every topological spaces is pre-T1/2Mem.Fac.Soc. Kochi Univ. math., Vol.17, pp.33 42.
- [11]Maragathavalli, S. and Sheikh John, M. (2005), **On-closed sets in topological spaces**, Acta Ciencia India, Vol.35 (3), pp.805-814. [12] Mashhour, A.S., Abd EL-Monsef, M.E., and EL-Deep, S.N. (1982), **On pre-continuous and weak continuous mapping**, Proc. Math. and
- Phys. Soc. Egypt, Vol. 53, pp. 47-53.

[14] Njastad,O.(1965), On some classes of nearly open sets, Pacific J. Math. 15, pp. 961-970.

^[1]Abd El-Monsef, M.E., Rose Mary, S. and Lellis Thivagar, M. (2007), On αĝ -closed sets in topological spaces, Assiut University Journal of Mathematics and computer science, Vol.36, pp.43 – 51.

^[2] Andrijevic, D., (1986), Semi -preopen sets, Math. Vesnik, Vol.38(1), pp.24-32.

^[13]Murugalinam, M., Somasundaram, S. and Palaniammal, S. (2005), A generalized star sets, Bulletin of Pure and Applied Science, Vol.24 (2), pp.233 – 238.

(An ISO 3297: 2007 Certified Organization)

Vol. 4, Issue 10, October 2015

- [15] Ramya, N. and Parvathi, A. (2011), $\psi \hat{g}$ -closed sets in topological spaces International Journal of Mathematical Archive- Vol.2(10), pp. 1992 1996.
- [16] Stone, M., (1937), Application of the theory of Boolean rings to general topology, Trans. Amer.Math. Soc. Vol.41, pp.374-481.
- [17] Vadivel, A. and Swaminathan, A. (2012), g*p-closed sets in topological spaces, J. Advanced studies in topology, Vol.3 No.1, pp.81-88.
- [18] Veera kumar, M.K.R.S., (2000), Between semi-closed sets and semi-pre closed sets, Rend. Istit.Mat. Univ.Trieste, (ITALY)XXXXII, pp.25-41.
- [19] Veera kumar, M.K.R.S.(2000), Between closed and g-closed sets, Mem.Fac Sci. Kochi Univ.Math., Vol.21, pp. 1-19.
- [20] Veera kumar, M.K.R.S. (2002), ĝ -closed sets in topological spaces, Bull.Allah. Math. Soc, Vol.18, pp.99-112.
- [21] Veera Kumar, M.K.R.S. (2002), g*-pre closed sets, Acta Ciencia India, Vol.28(1), pp.51 60.
- [22] Veera kumar, M.K.R.S. (2005), Between ψ -closed sets and gsp-closed sets spaces, Antarctica. J.Math., Vol.2(1), pp.123-141.
- [23] Viswanathan,A.,and Ramasamy,K., (2009), **Studies on some new class of generalized closed sets and weakly closed sets in topological spaces, Ph.D.** Thesis Bharathiar University, Coimbatore.