
Volume 2, No. 4, April 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science
RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 180

A CHALLENGE IN HIDING ENCRYPTED MESSAGE IN LSB AND LSB+1 BIT

POSITIONS IN VARIOUS Cover Files

Joyshree Nath
1
, Sankar Das

2
, Shalabh Agarwal

3
 and Asoke Nath

4

1A.K.Chaudhuri School of IT,Raja Bazar Science College,Calcutta University
2,3,4Department of Computer Science’St. Xavier’s College (Autonomous),Kolkata

E-mail: joyshreenath@gmail.com1, dassankar16@yahoo.co.in, shalabh@sxccal.edu and asokejoy@gmail.com2

Abstract: The present work basically shows us how one can hide information in encrypted form to any cover file such as .exe files, Microsoft

office files, .dbf files, image files, audio files and video files. However, the size of the hidden message must be very small in comparison to

cover file which is an executable file. So far no one has tried to hide information inside any executable file. To make the system fully secured we

first encrypt the secret message using MSA algorithm (Nath et al.(1)) and then we hide the encrypted message inside the cover file. introduced a

new method for hiding any encrypted secret message inside a cover file. For encrypting secret message we have used new algorithm proposed by

Nath et al(1). For hiding secret message we have changed both LSB and LSB+1 bits of each byte of the cover file. A generalized method was

proposed by Nath etal(2) where they embed the secret message without going for any encryption.. The MSA(1) algorithm introduced a new

randomization method for generating the randomized key matrix to encrypt plain text file and to decrypt cipher text file. The MSA (1) method

also incorporates the multiple encryption and decryption process. To initiate the MSA algorithm the user has to enter a text_key, which can be of

16 characters long. This text_key is used to calculate the randomization number and the encryption number from the given text_key. The size of

the encryption key matrix is 16x16 and the total number of matrices can be formed from 16 x 16 is 256! which is quite large and the MSA

algorithm ensures that any of the pattern may be used for encryption as well as decryption process. To hide encrypted secret message in the

cover file we have inserted the 8 bits of each character of encrypted message file in 4 consecutive bytes of the cover file such that only LSB and

LSB+1 bits are changed depending on the bit pattern of the encrypted secret message. To make system further secured one has to enter a

password before the actual steganography process starts. We propose that our new method could be most appropriate for hiding any file in any

non-standard cover file such as executable file, compiler, MS-Office files, Data Base files such as .DBF, text editor such as notepad plus the

standard cover files such as image, audio, video files etc. The size of the secret message be very small in comparison to the executable cover file.

The present method may be implemented in mobile network, Bank data transactions in government sectors, in police department.

INTRODUCTION:
Nath et al (2) already proposed various methods for hiding

secret data inside image, audio and video files. In the

present work we propose two (2) methods: (i) We encrypt

the secret message(SM) using MSA proposed by Nath et

al.(1) and (ii) We insert the encrypted secret message

inside the cover file(CF) by changing the least significant

bit(LSB) and LSB+1 bits. We propose here to modify both

LSB and LSB+1 bit to ensure that we can hide more secret

message in a cover file. This method could be very useful in

embedding data in some non-standard cover files such as

compiler, OS, .exe file, database file etc. The present work

gives warning to the computer professionals that the present

method can be used to hide any secret message inside any

cover file except pure ASCII file. Now we will explain the

steganography method, which we have used here:

 (i) Changing Least Significant Bit(LSB) and LSB +1 bit of

the cover file: To hide one(1) byte secret message we

choose 4 consecutive bytes of the cover file and then insert

the bits in LSB and LSB+1 positions. To embed 1 byte

information we need 4 bytes of the cover file. Let us

consider a cover file which contains 4 bytes: 00101111

00011101 11011101 10100110. Suppose we want to

embed a number 245 in the above bit pattern. The binary

representation of 245 is 11110101. Now we try to embed

this bit pattern in above 4 bytes. To embed 11110101 we

will choose LSB and LSB+1 bits of the above 4 bytes of the

cover file. Table 1 shows how the bits are inserted.

Before

Replacem

ent

After

Replaceme

nt

Bit

inser

ted

Remarks

00101111 00101111 1,1 No change

in bit

pattern

00011101 00011111 1,1 Change in

bit

pattern(i)

11011101 11011101 0,1 No change

in bit

pattern(ii)

Table 1 Changing LSB and LSB+1 bits by the bits of secret message

file.

Here we can see that out of 4 bytes only 2 bytes get

changed. Since we are changing the LSB and LSB+1

bits hence we are either changing the corresponding

character in forward direction or in backward direction

by only three units (max.) As our eye is not very

sensitive so therefore after embedding a secret message

in a cover file our eye may not be able to find the

difference between the original message and the

message after inserting some secret text or message on

Joyshree Nath et al, Journal of Global Research in Computer Science,2 (4), April 2011

© JGRCS 2010, All Rights Reserved 181

to it. To embed secret message we have to first skip

5000 bytes from the last byte of the cover file. After that

according to size of the secret message (say n bytes) we

skip 4*n bytes and then we start to insert the bits of the

secret file into the cover file. Under no circumstances

the size of the cover file should not be less the

5*sizeof(secret message) then our method will fail. For

extracting embedded file from the cover file we have to

enter the password for verification purpose. If password

is correct then the program will read the file size from

the cover file. Once we get the file size we follow

simply the reverse process of embedding a file in the

cover file. We read LSB and LSB+1 bits of each byte

and accumulate 8 bits to form a character and we

immediately write that character on to a file. In the

present work we primarily try to embed any secret

message in some executable file, compiler, MS_Office

files , database file such as .DBF, editor program such

as notepad.exe etc. Normally the people try to hide

message inside some standard image file (.BMP file)

but in the present work we extended the steganografic

method to various non standard cover files. We try to

show here that time is coming when the any type of file

can be used as cover file for hiding some secret

information. Suppose a word document contains some

multiple choice type of questions and the answers to all

questions are embedded in the same question paper.

This may be dangerous but the time is coming in future

and we have to prepare ourselves to face it.

(ii) Meheboob, Saima and Asoke(MSA)

 Symmetric key Cryptographic method:

Nath et al.(1) proposed a symmetric key method where

they have used a random key generator for generating

the initial key and that key is used for encrypting the

given source file. MSA method is basically a

substitution method where we take 2 characters from

any input file and then search the corresponding

characters from the random key matrix and store the

encrypted data in another file. In our work we have the

provision for encrypting message multiple times.

 The key matrix contains all possible characters(ASCII

code 0 to 255) in a random order. The pattern of the key

matrix will depend on text_key entered by the user.

Nath et al. proposed algorithm to obtain randomization

number, encryption number and the initial shift

parameter from the text_key.

1. Random Key Generation and MSA

Encryption Algorithm:
Before we embed the secret message in a cover file we

first encrypt the secret message using MSA

algorithm(1). Now we will describe the MSA

algorithm in brief. To create Random key Matrix of

size(16x16) we have to take any text_key. The size of

text_key must be less than or equal to 16 characters

long. These 16 characters can be any of the 256

characters (ASCII code 0 to 255). The relative position

and the character itself are very important to calculate

the randomization number, the encryption number and

the relative shift of characters in the starting key matrix.

Let us take an example how to calculate randomization

number, the encryption number and relative shift from a

given text_key. Suppose text_key=AB. The data shown

in table 3 is used for calculating the place value and the

power of characters of the incoming key:

Table-3 Key length and base

Length of

key(n)

1 2 3 4 5 6 7 8

Base

value(b)

17 16 15 14 13 12 11 10

Length of

key(n)

9 10 11 12 13 14 15 16

Base

value(b)

9 8 7 6 5 4 3 2

Step-1: Sum=Σ ASCII Code * bm ----(1)

 m=1

Example-1: Choose a text_key=”AB”

 First we calculate the sum for key=”AB” using equation (1)

 Sum=65*161 + 66 * 162 =17936

 Now we have to calculate 3 parameters from this sum (i)

Randomization number (n1), (ii) Encryption number(n2)

and (iii)Relative shift(n3) using the following method:

(i) Randomization number (n1):

 num1=1*1+7*2+9*3+3*4+6*5=84

 n1=sum mod num1=17936 mod 84=44 . Note:

if n1=0 then n1=num1 and n1<=128

(ii) Encryption number (n2):

 num2=6*1+3*2+9*3+7*4+1*5=72

 n2=sum mod num2 =17936 mod 72 =8 Note:

if n2=0 then n2=num2 and n2<=64

 (iii) Relative shift (n3):

n3= Σall digits in sum=1+7+9+3+6=26

Now we apply the following randomization methods one

after another in a serial manner:

Step-1: Function cycling()

Step-2: Function upshift()

Step-3: Function downshift()

Step-4:Function leftshift()

Step-5:Function rightshift()

Step-6:Function random()

Step-7:Function random_diagonal_right()

Step-8:Function random_diagonal_left()

For detail randomization methods we refer to our previous

work(1).

After finishing above shifting process we perform

 (i)column randomization

 (ii)row randomization and

(iii)diagonal rotation and

(iv)reverse diagonal rotation.

Each operation will continue for n3 number of times.

Now we apply encryption process on any text file. Our

encryption process is as follows:

We choose a 4X4 simple key matrix as shown in table

4.
Table-4

A B C D

E F G H

I J K L

M N O P

Joyshree Nath et al, Journal of Global Research in Computer Science,2 (4), April 2011

© JGRCS 2010, All Rights Reserved 182

Case-I : Suppose we want to encrypt FF then it will taken

as GG which is just one character after F in the same row.

Case –II : Suppose we want to encrypt FK where F and K

appears in two different rows and two different columns.

FK will be encrypted to KH (FK����GJ����HK����KH).

Case-III: Suppose we want to encrypt EF where EF occurs

in the same row. Here EF will be converted to HG.

CHANGING LSB BITS OF COVER FILE USING

ENCRYPTED SECRET MESSAGE FILE

In the present work we have made an exhaustive study on

embedding (i) text, (ii)sound, (iii)image in different cover

files such as image file, sound file, word document file,

.PDF file. The size of the cover file must be at least 10-times

more than secret message file which is to be embedded

within the cover file. The last 500 bytes of the cover file we

reserved for storing the password and the size of the secret

message file. After that we subtract n*(size of the secret

message file) from the size of the cover file. Here n=8

depending on how many bytes we have used to embed one

byte of the secret message file in the cover file. For strong

password we have used a simple algorithm as follows: We

take XOR operation with each byte of the password with

255 and insert it into the cover file. To retrieve the password

we read the byte from the cover file and apply XOR

operation with 255 to get back original password. To embed

any any secret message we have to enter the password and

to extract message we have to enter the same password. The

size of the secret message file we convert into 32 bits binary

and then convert it into 4 characters and write onto cover

file. When we want to extract encrypted secret message

from a cover file then we first extract the file size from the

cover file and extract the same amount of bytes from cover

file. Now we will describe the algorithms which we have

used in our present study:

We read one byte at a time from the encrypted secret

message file(ESMF) and then we extract 8 bits from that

byte. After that we read 8 consecutive bytes from the cover

file(CF). We check the LSB of each byte of that 8 byte

chunk whether it is different from the bits of ESMF. If it

different then we replace that bit by the bit we obtain from

the ESMF. Our program also counts how many bits we

change and how many bytes we change and then we also

calculate the percentage of bits changed and percentage of

bytes changed in the CF. Now we will demonstrate in a

simple case.:

Suppose we want to embed “A” in the cover text

“BBCDEFGH”. Now we will show how this cover text will

be modified after we insert “A” within it.

TABLE -7

CHANGING LSB and LSB+1

Original

Text

Bit string Bit to

be

inserted

in LSB

Changed

Bit string

Changed

Text

B 01000010 0 01000010 B

B 01000010 1 01000011 C

C 01000011 0 01000010 B

D 01000100 0 01000100 D

E 01000101 0 01000100 D

F 01000110 0 01000110 F

G 01000111 0 01000110 F

H 01001000 1 01001001 I

Here we can see that to embed “A” we modify 5 bits out of

64 bits. After embedding “A” in cover text “BBCDEFGH”

the cover text converts to “BCBDDFFI”. We can see that

the change in cover text is prominent as we are trying to

embed text within text, which is actually not possible using

LSB method. But when we do it in some image or audio file

then it will not be so prominent.

To extract byte from the cover file we follow the reverse

process, which we apply in case of encoding the message.

We simply extract serially one by one from the cover file

and then we club 8 bits and convert it to a character and then

we write it to another file. But this extracted file is now in

encrypted form and hence we apply decryption process

which will be the reverse of encryption process to get back

original secret message file.

RESULTS AND DISCUSSION

Case-1: Cover File type=.jpg Secret File type=.jpg

 + =

Fig_1:Cover file name: sxcn.jpg Fig_2:Secret message File: joy1.jpg Fig_3: Embedded Cover file name: sxcn.jpg

Size=1155378 Bytes Size=1870 Bytes Size=1155378 Bytes

(Secret message encrypted before embedding)

Case-2: Cover File type=.BMP secret message file =.doc

Joyshree Nath et al, Journal of Global Research in Computer Science,2 (4), April 2011

© JGRCS 2010, All Rights Reserved 183

Fig_4: Cover File name: tvshow.bmp Fig_5: Embedded Cover File name : tvshow.bmp

Size=688856 Bytes. Size=688856 Bytes

In this file an encrypted word file

Xxfile2.doc (size=19456B) is embedded

Case-3: Cover File type=. BMP secret message file =.jpg

 + =

Fig_6: Cover file name = tvshow1.bmp Fig_7: Secret message file= Fig_8: Embedded cover file

(size=688856B) tuktuk1.jpg(size=50880B) name=tvshow1.bmp

(The secret message file was (size=688856B)

Encrypted while embedding)

Case-4: Cover File type=..AVI(Movie File) secret message file =.jpg

 + =

Fig_9: Cover File Name= Fig_10: Secret message File name Fig_11:Embedded Cover File Name=rhionos.avi.

(Size=76800B) = tuktuk_bw.jpg Name=rhinos.avi (size=76800B)

(size=1870B) (The encrypted secret message file is embedded)

CONCLUSION

In the present work we try to embed some secret

message inside any cover file in encrypted form so that

no one will be able to extract actual secret message.

Here we use the standard steganographic method i.e.

changing LSB bits of the cover file. Our encryption

method can use maximum encryption number=64 and

maximum randomization number=128. The key matrix

may be generated in 256! Ways. So in principle it will

be difficult for any one to decrypt the encrypted

message without knowing the exact key matrix. Our

method is essentially stream cipher method and it may

take huge amount of time if the files size is large and

the encryption number is also large. The merit of this

method is that if we change the key_text little bit then

the whole encryption and decryption process will

change. This method may most suitable for water

marking. The steganography method may be further

secured if we compress the secret message first and

then encrypt it and then finally embed inside the cover

file.

ACKNOWLEDGEMENT

A sincerely expresses his gratitude to Department of

Computer Science for providing necessary help and

assistance. AN is also extremely grateful to University

Grants Commission for providing fund for continuing

minor research project on Data encryption using

symmetric key and public key crypto system. JN is

grateful to A.K. Chaudhury School of I.T. for giving

inspiration for research work.

REFERENCES

[1] Symmetric key cryptography using random key

generator, A.Nath, S.Ghosh, M.A.Mallik,

Proceedings of International conference on SAM-

2010 held at Las Vegas(USA) 12-15 July,2010,

Vol-2,P-239-244

[2] Data Hiding and Retrieval, A.Nath, S.Das,

A.Chakrabarti, Proceedings of IEEE International

conference on Computer Intelligence and

Joyshree Nath et al, Journal of Global Research in Computer Science,2 (4), April 2011

© JGRCS 2010, All Rights Reserved 184

Computer Network held at Bhopal from 26-28

Nov, 2010.

[3] Advanced steganographic approach for hiding

encrypted secret message in LSB, LSB+1, LSB+2

and LSB+3 bits in non standard cover files,

Joyshree Nath, Sankar Das, Shalabh Agarwal and

Asoke Nath, International Journal of Computer

Applications (1975-8887), Vol 14-No.7, Page-31-

35(2011)

[4] Cryptography and Network, William Stallings,

Prectice Hall of India

[5] Modified Version of Playfair Cipher using Linear

Feedback Shift Register, P. Murali and Gandhidoss

Senthilkumar, UCSNS International journal of

Computer Science and Network Security, Vol-8

No.12, Dec 2008.

[6] Jpeg20000 Standard for Image Compression

Concepts algorithms and VLSI Architectures by

Tinku Acharya and Ping-Sing Tsai, Wiley

Interscience.

[7] Steganography and Seganalysis by Moerland, T ,

Leiden Institute of Advanced Computing Science.

[8] SSB-4 System of Steganography using bit 4 by

J.M.Rodrigues Et. Al.

[9] An Overview of Image Steganography by

T.Morkel, J.H.P. Eloff and M.S.Oliver.

Joyshree Nath et al, Journal of Global Research in Computer Science,2 (4), April 2011

© JGRCS 2010, All Rights Reserved 185

