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Abstract: Information transmission in the presence of „white noise‟ is error prone, but is not as elusive as any arbitrary noise prone channel. 

With respect to this restriction, the parity check is the only feasible error handling scheme that could be adopted in, at least, any intra-system 
digital communication (e.g. All existing computing systems use the ASCII codes); while the repetition of messages (e.g. The triplicate 
transmission scheme) is not a viable alternative. In this paper, we propose simple algorithms to clearly prove the greater practical efficiency of 
the 2-dimensional parity check based coding systems in the „rectangular‟ framework – as opposed to the established notion of the „square code‟ 
being more efficient. These algorithms are further corroborated by theorems, associated hypotheses and experimental results. The lower and the 
upper bound of our algorithms are clearly explained. 
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INTRODUCTION  

Digital computers are based on binary codes and digital 

communication necessitates the error free transmission of 

bits. Shannon‟s theorem on entropy provides a theoretical 

perspective on the „amount of information‟ carried by these 

codes as well as the lower bound on the average code length 

[1], [2].  

 

The parity check plays the most important role of error 

handling of messages in, at least any, intra – system digital 

communication. A typical example of the use of the parity 

check is in the transmission of ASCII codes in all existing 
computing systems – ASCII codes encode the alphabets, as 

in the keyboard encoders, during communication between 

human beings and any computing system. Effective parity 

check systems employ the 2-dimensional coding scheme on 

account of their exceptional error handling (single error 

correction and double error detection) properties. 

 

In this paper, we limit our discussion to a study of the 

efficiency of the 2-dimensional codes, in the square and the 

rectangular frameworks. While [1] and [2] clearly depict the 

square code as „theoretically more efficient‟, our studies 

prove the rectangular code to be definitely the „most 
practically efficient‟ – compared to all other multi-

dimensional coding systems [reminiscent of the philosophy 

of the 2-dimensional RAM organizations in computer 

architecture].  

 

We propose here, a simple, yet unique, logic to establish the 

greater practical efficacy of the rectangular code. 

Discussions on syndrome calculation, triplicate transmission 

and other such processes are trivially out of our arena. 

 

The paper begins with an insight into the inspiration behind 
the work followed by a discussion on the mathematical basis  

 

of our study. The article then proceeds to an elaboration on 

our proposed logic. 

INITIAL INSPIRATION 

Checksums, syndrome evaluation and the parity check are 

typical error handling schemes in digital transmission 

systems. Checksums permit error detection but no error 

correction; while syndrome evaluation and parity checks 
permit both – the former, at the price of high redundancy for 

small messages.  

 

Thus, in the light of error-free digital intra-system 

communication, where the length of messages is of the order 

of bytes, a study on the parity-check and the 2-dimensional 

codes stands obligatory. Prime focus lies on the evaluation 

of the redundancy involved in these coding systems. The 

redundancy leads to a measure of the efficiency of the code; 

greater the redundancy, lower is the efficiency and vice 

versa.  
 

Our concentration, in this paper, is entirely on error-free 

digital intra-system communication and consequentially on 

the efficiency of the 2-dimensional square and rectangular 

codes. 

MATHEMATICAL FOUNDATION 

This section highlights the mathematical prerequisites for the 

subject under discussion. 

Parity Bit Evaluation: 

Given a message M of (n – 1) bits, the consequent parity bit 
is a „1‟ or a „0‟, appended to M, such that the total number of 

ones in the n-bit message is either an even number (even-

parity) or an odd number (odd-parity). Thus, the evaluation 

of the parity bits calls for a count of the number of ones in 

the given message.  
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The popular algorithms for counting the number of ones in 

an n-bit message (say, B) are as follows [4]: 

a. The linear technique: involving a bit by bit check and 

a subsequent count of the number of occurrences of „1‟ 

in the message. This algorithm evidently has a time 

complexity of O(n) and a space complexity of O(1). 

b. The iterative intersection technique: involving an 

iteration of B = (B ∩ (B – 1)) until B reduces to 0. This 

algorithm has a time complexity of O(c) [c = number 

of „1‟s] and a space complexity of O(n). 

c. The divide and conquer summation technique: is 
based on the binary search method and the algorithm 

has a time complexity of O(log2n) and a space 

complexity of O(n).  

d. The look: up table technique: follows the content-

addressing approach where an input decimal number 

acts as the address to the corresponding bit-sum entry 

in a look-up table. This algorithm has a time 

complexity of O(1) but a space complexity of O(2n). 

 

Once the number of „1‟s (say m) in the message is counted, 

the parity bit equals m modulus 2. 

Of all the four algorithms: 

a) The linear technique, though is the slowest, is the 

simplest and is acceptable for all practical purposes;  

b) The iterative intersection technique is ideal for sparse 

strings and can only be used if sufficient memory be 
available;  

c) The divide and conquer summation technique, 

though elegant, has a rather complex implementation 

strategy and depends on the available memory.  

d) The look – up table technique is the fastest algorithm 

but requires an extravagant amount of memory. 

Note: Use of parallel algorithms to count the number of 

ones, reduces the parity check evaluation to an O(1) 

operation.  

Redundancy in the 2 – dimensional rectangular and 

square Codes 
[1], [2]: 

In the rectangular code representation of an n – bit message, 

the bits of the message are arranged in a (p x q) rectangle, 

where (p * q) = n. A parity check bit is appended to each of 

the rows as well as to each of the columns, transforming the 

original (p x q) rectangle into a [(p + 1) x (q + 1)] rectangle. 

The redundancy (Rrect) thus equals: 

rect

Number of bits used in the complete message
R

Number of bits in theoriginal message
 

           or, 
rect

(p 1)(q 1)
R

pq  

    (1) 

and,  

the total number of redundant bits = number of parity check 

bits = p + q + 1      (2) 

Now, for the case that the rectangle approaches a square 

(where, p = q), i.e. n is a perfect square, the redundancy 

(Rsq) clearly equals [using Equation 1]: 

sq

(p 1)(p 1)
R

pp
 

or, 
2

sq 2

(p 1)
R

p

           (3)

 
and, 

the total number of redundant bits = number of parity check 

bits= 2p + 1     (4) 

Evidently, for a given value of „n‟, where „n‟ is a perfect 

square and has multiple factors (besides 1, „n‟ and n ), 

Equations 1 and 2 attain minimum value when they equate 

to Equations 3 and 4 respectively.  

 

The redundancy associated with the square and the 

rectangular codes, as evaluated in Equations 2 and 4, is 

visualized through the plots shown in Fig. 1. The square 

code indeed shows minimum redundancy for all values of 

„n‟ – where „n‟ is a perfect square. In Fig. 1, the rectangular 

code plot is formed using any random factor pair of „n‟ and 

this code equates to the square code only when „n‟ has no 

other factor besides 1, „n‟ and n . 

 

The rectangular codes and the square codes are responsible 

for the [1]-[3]: 

a. Detection of an even number of bits in error, across 

either a single row (where each column has a single 

bit in error) or a single column (where each row has a 

single bit in error). 
b. Correction of any number of odd bits in error, across 

either a single row (where each column has a single 

bit in error) or a single column (where each row has a 

single bit in error).  

Relevant Theorems, Observations and Hypothesis: 

Theorem 1: Given a message M of n – bits, where „n‟ is a 

composite number, let there be k pairs of factors of „n‟, {(p1, 

q1), (p2, q2), …, (pk, qk)}. The redundancy is the minimum, 

if the factor pair (p, q) selected satisfies: 

1 i k i i
(p 1)(q 1) [( 1)( 1)]p qmin

   
(5) 

Proof: From Equation (1), the redundancy for the ith (1≤ I ≤ 

k) factor pair equals: 

i

i i
rect

( 1)( 1)p q
R

pq     

 (6)

 
Now, the denominator of the fraction in Equation 6 being 

equal i , 
irectR is undoubtedly minimum for the factor pair 

that satisfies Equation 5. 

 
Trivial Observation 1: The distance between i2 and (i + 1)2, 

where „i‟ is a natural number and i ≥ 1,  

= (2i + 1)      (7) 

Note: This observation is in accordance with the sparse 

distribution of perfect square integers in the natural number 

space. For instance, there exist three perfect square integers 

{1, 4, 9} in the range [1, 10], one perfect square integer 

{16} in the range [11, 20], no perfect square integers in the 

[51, 60] range and so on.  

 

Trivial Observation 2: The number of zeroes that needs to 
be appended to a given n-bit message M, such that n is 

raised to its nearest perfect square integer is: 
2

n n      (8) 

Note: Zeroes appended to a given message M do not affect 

the parity of M. 
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Figure 1. Plot representing the number of parity (or redundant) bits, with respect to Equations 2 and 4, in the square and the rectangular code of a given n – bit 

message; „n‟ is factored with respect to Equation 5. The square code indeed shows minimum redundancy for all values of „n‟ – „n‟ is a perfect square. 

Deductive Hypothesis: Using Equations 7 and 8, we arrive 

at the following relation,  

0 ≤ 
2

n n  ≤ 2i    (9) 

where, i2 ≤ n < (i + 1)2, „i‟ is a natural number and i ≥ 1. 

DETAILS OF THE PROPOSED LOGIC 

The results of the preceding section theoretically and 

figuratively depict the square code to be more efficient than 

the rectangular code. Evidently, these results assume: 1) „n‟ 
to be a perfect square and thus to be directly convertible to 

the consequent rectangular and square forms, and 2) the 

parity bit(s) is the sole contributor to the redundancy. 

However, on a deeper examination it is obvious that the 

convertibility of the n-bit message (M) to these 2-

dimensional codes depends entirely on whether „n‟ is a 

perfect square, prime or composite-non-square integer.  

 

This observation suggests the incorporation of a second 

factor of redundancy – the number of „0‟s that need to be 

appended to M to raise „n‟ to a number directly 
transformable to the square or the rectangular codes.  

 

If „n‟ is not a perfect square, the conversion of M into a 

square code relies on its distance to the nearest perfect 

square integer, as is shown in Equation 8. Whereas, the 

conversion of M into the rectangular code requires 

appending, at most, a single „0‟ to the message only if „n‟ is 

a prime number (n > 2) [Two „0‟s need to be appended only 

if n = 2]. 

 

These facts lead to the conclusion that the rectangular code, 

almost always, supersedes the square code in terms of 

efficiency, given any arbitrary n-bit message. It is this 

deduction that forms the basis of this paper. Moreover, 

considering an intra-system digital communication system 

and its constraints on message length, incorporation of any 
irrelevant redundancy is undeniably unwanted. Therefore, 

all studies made in the context of redundancy are 

undoubtedly of importance. 

 

This section describes our studies – the subtle mathematical 

details, algorithms and experimental results obtained – in the 

purview of the supposition made on the rectangular codes. 

 

Given a message of n bits –  

Assumption 1. The system is assumed to utilize any of the 

standard algorithms to test if „n‟ is prime or is a perfect 

square and also to evaluate the factors of „n‟ [5], [6]. The 
factors of „n‟ follow Equation 5. These tests are essentially 

pre-processing steps, and the complexities of these 

algorithms, though affect the execution time of the entire 2-

dimensional coding system, do not particularly affect the 

areas of our concern – the parity check and the efficiency of 

the 2-dimensional codes. Thus, the complexities of these 

algorithms do not feature in the subsequent discussion. 

 

Assumption 2. The system utilizes the linear of counting the 

number of „1‟s to evaluate the parity bits in a given 

message. 
 

Assumption 3. The system takes constant time to append a 

single zero to the message. 
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Proposed Algorithm for the Formation of the Square 

Code, Given an n – bit Message: 

Algorithm I: 

Input:  Message M of n – bits 

Output:  The square code of M 
Steps: 

a. Find square root („root‟) of n 

[root = n ] 

b. Is n a perfect square? 

[If (root)2 > n,  

then append ((root)2 – n) redundant zeroes to M so 

that the modified M contains (root)2 bits]  

c. Arrange M  into the (root x root) square code 

organization 

[The first set of „root‟ consecutive bits of M  forms 

row1 of the organization, the next set of „root‟ 

consecutive bits of M  form row2, and so on till rowroot 

is formed.] 

d. Evaluate the parity bit for every row and column, of 

the (root x root) organization, and append the parity 

bits to the corresponding row and column respectively.  

 [After the inclusion of the parity bits, the square code 
of M is obtained. The dimension of the formed square 

code is: (root + 1) x (root + 1).] 

e. Stop 

Computation of the Redundancy Introduced into the 

Message by Algorithm I: 

i. Computation of the square root (sqr) of n,  

where, sqr = n  

ii. If [(sqr)2 > n] 

then 

a. r = (sqr)2, where r = new message length. 

b. s = r – n, where s = number of zeroes appended to 

the original message, such that (s + n) = r.  

 Else 

s = 0  

iii. Using Equation 3, redundancy (Rsq_q) equals 
2

sq _q

(sqr 1)
R

n
    (10) 

and using Equation 4, 

the total number of actual redundant bits  

= s + total number of parity check bits 

= s + (2 * sqr + 1)     (11) 

where, s lies in the range stated in the Inequality 9. 

Analysis of Algorithm I: 

Using Assumptions 1, 2 and 3, we arrive at the following 

results: 

a. Time to append the redundant zeroes 

= time to append a single zero * number of redundant zeroes 

= (1 * s) i.e., O(s)      (12) 

 

b. Time to evaluate the parity bits 

= [time to evaluate the parity bits for the rows of the square 

code + time to evaluate the parity bits for the columns of the 

square code] 

= (time to evaluate the parity bit for a single row * number 

of rows) + (time to evaluate the parity bit for a single 
column * number of columns) 

= (number of bits in a single row * number of rows) + 

(number of bits in a single column * number of columns) 

(13) 

 

Now, after the parity bits for the rows (columns) are 

calculated, the parity bits for the columns (rows) requires 

evaluating the parity bits over (sqr + 1) columns (rows). 

Thus, Equation 13 equates to:  

= (sqr)2 + [sqr * (sqr + 1)] = [sqr(2sqr + 1)] 

≤ 
3

1 2 1n i.e., 3 2
n + O(n2)   (14) 

c. Using Equations 12 and 14, the total time complexity 

of the algorithm 

= time to append the redundant zeroes + time to evaluate the 

parity bits = 3 2
n + O(s + n2)   (15) 

 

In the best case, s = 0 and the time complexity of the 

algorithm reduces to that in Equation 14. In the worst case, 

when s = 2i [as in Inequality 9], the time complexity of the 

algorithm is inclusive of all the terms and equates to [ 3 2
n + 

O(2i + n2)]. 

Proposed Algorithm for the Formation of the Rectangular 

Code, Given an n – bit Message: 

Algorithm II: 

Input:  Message M of n – bits 

Output:  The rectangular code of M 

Steps: 

a. Is n a composite number? 

[If n is prime and n = 2,  

then append two redundant zeroes to M, so that the 

modified M contains 4 bits and n = 4  

Else  

if n is prime and n ≥ 3,  
then append one redundant zero to M, so that 

the modified M contains (n + 1) bits and n = (n 

+ 1)] 

b. Factorize n into its factors p and q 

[p and q follow Equation 5] 

c. Arrange M  into the (p x q) rectangular code 

organization 

 [The first set of „q‟ consecutive bits of M form row1 of 

the organization, the next set of „q‟ consecutive bits of 

M  form row2, and so on till rowp is formed] 

d. Evaluate the parity bit for every row and every column 
of the (p x q) organization and append the parity bits to 

the corresponding row and column respectively.  

 [After the inclusion of the parity bits, the rectangular 

code of M is obtained. The dimension of the formed 

rectangular code is: (p + 1) x (q + 1).] 

e. Stop 

Computation of the Redundancy Introduced into the 

Message by Algorithm II: 

i. If n is a prime number  

a. If (n ≥ 3), 

then s = 1, where s equals to the number of zeroes 

appended to the message. 

b. If (n = 2), 

then s = 2,  

Else  

s = 0 
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ii. r = (n + s), where r is the new message length and r is 

composite. 

iii. Factorization of r into its factors p and q, as per 

Equation 5. 

iv. Using Equation 1, redundancy (Rrect_q) equals 

rect _ q

(p 1)(q 1)
R

n     
 (16)

 
 and using Equation 2, 

 the total number of actual redundant bits  

= s + total number of parity check bits 
= s + (p + q + 1)     (17) 

where, s = 0 (if, n is composite), 1 (if n is a prime 

number ≥ 3), 2 (if n = 2). 

Analysis of the Algorithm II: 

Using assumptions (1), (2) and (3), we arrive at the 
following results: 

a. The time to append the redundant zeroes 

= time to append a single zero * number of redundant zeroes 

= (1 * s) i.e., O(s)     (18) 

b. The time to evaluate the parity bits 

= [time to evaluate the parity bits for the rows of the 

rectangular code + time to evaluate the parity bits for the 

columns of the rectangular code] 

= (time to evaluate the parity bit for a single row * number 

of rows) + (time to evaluate the parity bit for a single 

column * number of columns) 

= (number of bits in a single row * number of rows) + 
(number of bits in a single column * number of columns) 

                                              (19) 

 

Now, after the parity bits for the rows (columns) are 

calculated, the parity bits for the columns (rows) requires 

evaluating the parity bits over (q + 1) columns [(p + 1) 

rows]. Thus, Equation 19,  

= (q * p) + [p * (q + 1)]   [or, (p * q) + [q * (p + 

1)]] 

= [p(2q + 1)]                [or, q(2p + 

1)] 
≤ 3n i.e., O(n2)      (20) 

c. Using Equations 18 and 20, the total time complexity 

of the algorithm 

= time to append the redundant zeroes + time to evaluate the 

parity bits = O(s + n2)    (21) 

 

In the best case, s = 0 and the time complexity of the 

algorithm reduces to Equation (20). In the worst case, s = 2 

[when n = 2], and the time complexity of the algorithm 

equates to O(2 + n2). 

Inference: 

For a given n-bit message M, we infer the following from 

Equations 10-21: 

a. Equations 10 and 11 acknowledge the sparse 

distribution of perfect square integers across the 

natural number space. Raising any arbitrary value „n‟ 

to its nearest perfect square integer, is indeed an 
expensive operation. 

b. Equations 10, and 16 yield equal results only if p = q = 

sqr, i.e., when „n‟ is a perfect square. [This coincides 

with the results in [1] – explained in the preceding 

section]. 

c. Equations 16 and 17 yield lower values than those of 

Equations 10 and 11 respectively, when „n‟ is not a 

perfect square, i.e. (sqr2) > (n).    

d. Equations 15 and 21 underline the time complexities 

of the algorithms proposed for the square code and the 

rectangular code formations, respectively. The 2-

dimensional codes, in the rectangular framework, are 
clearly optimal. 

 

The studies described in this section, essentially generalize 

the formation of the square and the rectangular codes to that 

for any given n-bit message – irrespective of the numeric 

character of „n‟.  

 

All of the aforementioned consequential deductions, thus, 

formidably prove the rectangular code to be the coding 

scheme that incorporates minimum redundancy and is thus, 

the most „practically efficient‟ 2-dimensional code. The 
inferences are further supported by Fig. 2 and Fig. 3.  

 

Fig. 2 depicts plots corresponding to the number of extra 

zeroes that need to be appended to any n-bit message to 

evaluate the square and the rectangular codes. Fig. 3 depicts 

plots corresponding to the total number of redundant bits for 

both the square and the rectangular code formations given 

any n-bit message. In both the figures, the rectangular code 

achieves considerably lower values, for all values of „n‟.  

Table 1 represents a tabular summarization of Fig. 2 and 

Fig. 3. 

 

Note: An extension of the described logic describes the 

efficiency of the Rectangular codes in comparison to all the 

other multi – dimensional code formats. 

CONCLUSION 

In this paper, we algorithmically, mathematically and 

experimentally prove the rectangular code to be the most 

„practically efficient‟ code.  

 

We begin with a discussion on the established notion of the 

efficiency of the square code, to later point out the sparse 

distribution of the perfect square integers to be detrimental 

to the notion. Conversion of a message to its square code is 

indeed inefficient and expensive. The paper then presents 

studies that establish the intuitive, highly efficient and 

relatively cost effective character of the rectangular code. 
Moreover, the rectangular code inherits the exceptional error 

handling potential of the 2-dimensional coding systems. It 

can thus be rightly concluded that the rectangular code is 

definitely the most practically efficient scheme to enhance 

the robustness of the existing intra-system digital 

communication systems. 

 

Further studies on the rectangular codes are alluring, and we 

are in the process of its excavation. 
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Figure 2. Plot representing the number of zeroes to be appended to the given n – bit message, where „n‟ is an arbitrary integer, for the conversion to the square and 

the rectangular codes. The rectangular code achieves minimum results for all values of „n‟, and coincides with the square code only when „n‟ is a perfect square. 

 

 

Figure 3. Plot representing the total number of redundant bits in the square and the rectangular code of a given n – bit message, where „n‟ is an arbitrary integer. The 

rectangular code shows minimum redundancy for all values of „n‟. 
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Table 1. Tabular summarization of the plots in Fig. 1, Fig. 2 and Fig. 3. The rectangular code shows minimum overall redundancy requirements for all values of 

„n‟ – irrespective of  the numeric nature of „n‟ and is thus, evidently the most efficient code. 
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