
Volume 3, No. 3, March 2012

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 17

A CLOSER LOOK INTO THE RECTANGULAR CODES: WHERE THE PARITY

CHECK PREDOMINATES

Romi Banerjee
*1

, Saptarshi Naskar
2
 and Samar Sen Sarma

3

*1Department of Computer Science and Engineering, University of Calcutta, Kolkata, West Bengal, India

rm.banerjee@gmail.com1
2Department of Computer Science, Sarsuna College, Kolkata, West Bengal, India

sapgrin@gmail.com2

3Department of Computer Science and Engineering, University of Calcutta, Kolkata, West Bengal, India

sssarma2001@yahoo.com3

Abstract: Information transmission in the presence of „white noise‟ is error prone, but is not as elusive as any arbitrary noise prone channel.

With respect to this restriction, the parity check is the only feasible error handling scheme that could be adopted in, at least, any intra-system
digital communication (e.g. All existing computing systems use the ASCII codes); while the repetition of messages (e.g. The triplicate
transmission scheme) is not a viable alternative. In this paper, we propose simple algorithms to clearly prove the greater practical efficiency of
the 2-dimensional parity check based coding systems in the „rectangular‟ framework – as opposed to the established notion of the „square code‟
being more efficient. These algorithms are further corroborated by theorems, associated hypotheses and experimental results. The lower and the
upper bound of our algorithms are clearly explained.

Keywords: 2-dimensional codes, efficiency, parity check, rectangular code, redundancy, square code

INTRODUCTION

Digital computers are based on binary codes and digital

communication necessitates the error free transmission of

bits. Shannon‟s theorem on entropy provides a theoretical

perspective on the „amount of information‟ carried by these

codes as well as the lower bound on the average code length

[1], [2].

The parity check plays the most important role of error

handling of messages in, at least any, intra – system digital

communication. A typical example of the use of the parity

check is in the transmission of ASCII codes in all existing
computing systems – ASCII codes encode the alphabets, as

in the keyboard encoders, during communication between

human beings and any computing system. Effective parity

check systems employ the 2-dimensional coding scheme on

account of their exceptional error handling (single error

correction and double error detection) properties.

In this paper, we limit our discussion to a study of the

efficiency of the 2-dimensional codes, in the square and the

rectangular frameworks. While [1] and [2] clearly depict the

square code as „theoretically more efficient‟, our studies

prove the rectangular code to be definitely the „most
practically efficient‟ – compared to all other multi-

dimensional coding systems [reminiscent of the philosophy

of the 2-dimensional RAM organizations in computer

architecture].

We propose here, a simple, yet unique, logic to establish the

greater practical efficacy of the rectangular code.

Discussions on syndrome calculation, triplicate transmission

and other such processes are trivially out of our arena.

The paper begins with an insight into the inspiration behind
the work followed by a discussion on the mathematical basis

of our study. The article then proceeds to an elaboration on

our proposed logic.

INITIAL INSPIRATION

Checksums, syndrome evaluation and the parity check are

typical error handling schemes in digital transmission

systems. Checksums permit error detection but no error

correction; while syndrome evaluation and parity checks
permit both – the former, at the price of high redundancy for

small messages.

Thus, in the light of error-free digital intra-system

communication, where the length of messages is of the order

of bytes, a study on the parity-check and the 2-dimensional

codes stands obligatory. Prime focus lies on the evaluation

of the redundancy involved in these coding systems. The

redundancy leads to a measure of the efficiency of the code;

greater the redundancy, lower is the efficiency and vice

versa.

Our concentration, in this paper, is entirely on error-free

digital intra-system communication and consequentially on

the efficiency of the 2-dimensional square and rectangular

codes.

MATHEMATICAL FOUNDATION

This section highlights the mathematical prerequisites for the

subject under discussion.

Parity Bit Evaluation:

Given a message M of (n – 1) bits, the consequent parity bit
is a „1‟ or a „0‟, appended to M, such that the total number of

ones in the n-bit message is either an even number (even-

parity) or an odd number (odd-parity). Thus, the evaluation

of the parity bits calls for a count of the number of ones in

the given message.

Romi Banerjee et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 17-23

© JGRCS 2010, All Rights Reserved 18

The popular algorithms for counting the number of ones in

an n-bit message (say, B) are as follows [4]:

a. The linear technique: involving a bit by bit check and

a subsequent count of the number of occurrences of „1‟

in the message. This algorithm evidently has a time

complexity of O(n) and a space complexity of O(1).

b. The iterative intersection technique: involving an

iteration of B = (B ∩ (B – 1)) until B reduces to 0. This

algorithm has a time complexity of O(c) [c = number

of „1‟s] and a space complexity of O(n).

c. The divide and conquer summation technique: is
based on the binary search method and the algorithm

has a time complexity of O(log2n) and a space

complexity of O(n).

d. The look: up table technique: follows the content-

addressing approach where an input decimal number

acts as the address to the corresponding bit-sum entry

in a look-up table. This algorithm has a time

complexity of O(1) but a space complexity of O(2n).

Once the number of „1‟s (say m) in the message is counted,

the parity bit equals m modulus 2.

Of all the four algorithms:

a) The linear technique, though is the slowest, is the

simplest and is acceptable for all practical purposes;

b) The iterative intersection technique is ideal for sparse

strings and can only be used if sufficient memory be
available;

c) The divide and conquer summation technique,

though elegant, has a rather complex implementation

strategy and depends on the available memory.

d) The look – up table technique is the fastest algorithm

but requires an extravagant amount of memory.

Note: Use of parallel algorithms to count the number of

ones, reduces the parity check evaluation to an O(1)

operation.

Redundancy in the 2 – dimensional rectangular and

square Codes
[1], [2]:

In the rectangular code representation of an n – bit message,

the bits of the message are arranged in a (p x q) rectangle,

where (p * q) = n. A parity check bit is appended to each of

the rows as well as to each of the columns, transforming the

original (p x q) rectangle into a [(p + 1) x (q + 1)] rectangle.

The redundancy (Rrect) thus equals:

rect

Number of bits used in the complete message
R

Number of bits in theoriginal message

 or,
rect

(p 1)(q 1)
R

pq

 (1)

and,

the total number of redundant bits = number of parity check

bits = p + q + 1 (2)

Now, for the case that the rectangle approaches a square

(where, p = q), i.e. n is a perfect square, the redundancy

(Rsq) clearly equals [using Equation 1]:

sq

(p 1)(p 1)
R

pp

or,
2

sq 2

(p 1)
R

p

 (3)

and,

the total number of redundant bits = number of parity check

bits= 2p + 1 (4)

Evidently, for a given value of „n‟, where „n‟ is a perfect

square and has multiple factors (besides 1, „n‟ and n),

Equations 1 and 2 attain minimum value when they equate

to Equations 3 and 4 respectively.

The redundancy associated with the square and the

rectangular codes, as evaluated in Equations 2 and 4, is

visualized through the plots shown in Fig. 1. The square

code indeed shows minimum redundancy for all values of

„n‟ – where „n‟ is a perfect square. In Fig. 1, the rectangular

code plot is formed using any random factor pair of „n‟ and

this code equates to the square code only when „n‟ has no

other factor besides 1, „n‟ and n .

The rectangular codes and the square codes are responsible

for the [1]-[3]:

a. Detection of an even number of bits in error, across

either a single row (where each column has a single

bit in error) or a single column (where each row has a

single bit in error).
b. Correction of any number of odd bits in error, across

either a single row (where each column has a single

bit in error) or a single column (where each row has a

single bit in error).

Relevant Theorems, Observations and Hypothesis:

Theorem 1: Given a message M of n – bits, where „n‟ is a

composite number, let there be k pairs of factors of „n‟, {(p1,

q1), (p2, q2), …, (pk, qk)}. The redundancy is the minimum,

if the factor pair (p, q) selected satisfies:

1 i k i i
(p 1)(q 1) [(1)(1)]p qmin

(5)

Proof: From Equation (1), the redundancy for the ith (1≤ I ≤

k) factor pair equals:

i

i i
rect

(1)(1)p q
R

pq

 (6)

Now, the denominator of the fraction in Equation 6 being

equal i ,
irectR is undoubtedly minimum for the factor pair

that satisfies Equation 5.

Trivial Observation 1: The distance between i2 and (i + 1)2,

where „i‟ is a natural number and i ≥ 1,

= (2i + 1) (7)

Note: This observation is in accordance with the sparse

distribution of perfect square integers in the natural number

space. For instance, there exist three perfect square integers

{1, 4, 9} in the range [1, 10], one perfect square integer

{16} in the range [11, 20], no perfect square integers in the

[51, 60] range and so on.

Trivial Observation 2: The number of zeroes that needs to
be appended to a given n-bit message M, such that n is

raised to its nearest perfect square integer is:
2

n n (8)

Note: Zeroes appended to a given message M do not affect

the parity of M.

Romi Banerjee et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 17-23

© JGRCS 2010, All Rights Reserved 19

Figure 1. Plot representing the number of parity (or redundant) bits, with respect to Equations 2 and 4, in the square and the rectangular code of a given n – bit

message; „n‟ is factored with respect to Equation 5. The square code indeed shows minimum redundancy for all values of „n‟ – „n‟ is a perfect square.

Deductive Hypothesis: Using Equations 7 and 8, we arrive

at the following relation,

0 ≤
2

n n ≤ 2i (9)

where, i2 ≤ n < (i + 1)2, „i‟ is a natural number and i ≥ 1.

DETAILS OF THE PROPOSED LOGIC

The results of the preceding section theoretically and

figuratively depict the square code to be more efficient than

the rectangular code. Evidently, these results assume: 1) „n‟
to be a perfect square and thus to be directly convertible to

the consequent rectangular and square forms, and 2) the

parity bit(s) is the sole contributor to the redundancy.

However, on a deeper examination it is obvious that the

convertibility of the n-bit message (M) to these 2-

dimensional codes depends entirely on whether „n‟ is a

perfect square, prime or composite-non-square integer.

This observation suggests the incorporation of a second

factor of redundancy – the number of „0‟s that need to be

appended to M to raise „n‟ to a number directly
transformable to the square or the rectangular codes.

If „n‟ is not a perfect square, the conversion of M into a

square code relies on its distance to the nearest perfect

square integer, as is shown in Equation 8. Whereas, the

conversion of M into the rectangular code requires

appending, at most, a single „0‟ to the message only if „n‟ is

a prime number (n > 2) [Two „0‟s need to be appended only

if n = 2].

These facts lead to the conclusion that the rectangular code,

almost always, supersedes the square code in terms of

efficiency, given any arbitrary n-bit message. It is this

deduction that forms the basis of this paper. Moreover,

considering an intra-system digital communication system

and its constraints on message length, incorporation of any
irrelevant redundancy is undeniably unwanted. Therefore,

all studies made in the context of redundancy are

undoubtedly of importance.

This section describes our studies – the subtle mathematical

details, algorithms and experimental results obtained – in the

purview of the supposition made on the rectangular codes.

Given a message of n bits –

Assumption 1. The system is assumed to utilize any of the

standard algorithms to test if „n‟ is prime or is a perfect

square and also to evaluate the factors of „n‟ [5], [6]. The
factors of „n‟ follow Equation 5. These tests are essentially

pre-processing steps, and the complexities of these

algorithms, though affect the execution time of the entire 2-

dimensional coding system, do not particularly affect the

areas of our concern – the parity check and the efficiency of

the 2-dimensional codes. Thus, the complexities of these

algorithms do not feature in the subsequent discussion.

Assumption 2. The system utilizes the linear of counting the

number of „1‟s to evaluate the parity bits in a given

message.

Assumption 3. The system takes constant time to append a

single zero to the message.

Romi Banerjee et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 17-23

© JGRCS 2010, All Rights Reserved 20

Proposed Algorithm for the Formation of the Square

Code, Given an n – bit Message:

Algorithm I:

Input: Message M of n – bits

Output: The square code of M
Steps:

a. Find square root („root‟) of n

[root = n]

b. Is n a perfect square?

[If (root)2 > n,

then append ((root)2 – n) redundant zeroes to M so

that the modified M contains (root)2 bits]

c. Arrange M into the (root x root) square code

organization

[The first set of „root‟ consecutive bits of M forms

row1 of the organization, the next set of „root‟

consecutive bits of M form row2, and so on till rowroot

is formed.]

d. Evaluate the parity bit for every row and column, of

the (root x root) organization, and append the parity

bits to the corresponding row and column respectively.

 [After the inclusion of the parity bits, the square code
of M is obtained. The dimension of the formed square

code is: (root + 1) x (root + 1).]

e. Stop

Computation of the Redundancy Introduced into the

Message by Algorithm I:

i. Computation of the square root (sqr) of n,

where, sqr = n

ii. If [(sqr)2 > n]

then

a. r = (sqr)2, where r = new message length.

b. s = r – n, where s = number of zeroes appended to

the original message, such that (s + n) = r.

 Else

s = 0

iii. Using Equation 3, redundancy (Rsq_q) equals
2

sq _q

(sqr 1)
R

n
 (10)

and using Equation 4,

the total number of actual redundant bits

= s + total number of parity check bits

= s + (2 * sqr + 1) (11)

where, s lies in the range stated in the Inequality 9.

Analysis of Algorithm I:

Using Assumptions 1, 2 and 3, we arrive at the following

results:

a. Time to append the redundant zeroes

= time to append a single zero * number of redundant zeroes

= (1 * s) i.e., O(s) (12)

b. Time to evaluate the parity bits

= [time to evaluate the parity bits for the rows of the square

code + time to evaluate the parity bits for the columns of the

square code]

= (time to evaluate the parity bit for a single row * number

of rows) + (time to evaluate the parity bit for a single
column * number of columns)

= (number of bits in a single row * number of rows) +

(number of bits in a single column * number of columns)

(13)

Now, after the parity bits for the rows (columns) are

calculated, the parity bits for the columns (rows) requires

evaluating the parity bits over (sqr + 1) columns (rows).

Thus, Equation 13 equates to:

= (sqr)2 + [sqr * (sqr + 1)] = [sqr(2sqr + 1)]

≤
3

1 2 1n i.e., 3 2
n + O(n2) (14)

c. Using Equations 12 and 14, the total time complexity

of the algorithm

= time to append the redundant zeroes + time to evaluate the

parity bits = 3 2
n + O(s + n2) (15)

In the best case, s = 0 and the time complexity of the

algorithm reduces to that in Equation 14. In the worst case,

when s = 2i [as in Inequality 9], the time complexity of the

algorithm is inclusive of all the terms and equates to [3 2
n +

O(2i + n2)].

Proposed Algorithm for the Formation of the Rectangular

Code, Given an n – bit Message:

Algorithm II:

Input: Message M of n – bits

Output: The rectangular code of M

Steps:

a. Is n a composite number?

[If n is prime and n = 2,

then append two redundant zeroes to M, so that the

modified M contains 4 bits and n = 4

Else

if n is prime and n ≥ 3,
then append one redundant zero to M, so that

the modified M contains (n + 1) bits and n = (n

+ 1)]

b. Factorize n into its factors p and q

[p and q follow Equation 5]

c. Arrange M into the (p x q) rectangular code

organization

 [The first set of „q‟ consecutive bits of M form row1 of

the organization, the next set of „q‟ consecutive bits of

M form row2, and so on till rowp is formed]

d. Evaluate the parity bit for every row and every column
of the (p x q) organization and append the parity bits to

the corresponding row and column respectively.

 [After the inclusion of the parity bits, the rectangular

code of M is obtained. The dimension of the formed

rectangular code is: (p + 1) x (q + 1).]

e. Stop

Computation of the Redundancy Introduced into the

Message by Algorithm II:

i. If n is a prime number

a. If (n ≥ 3),

then s = 1, where s equals to the number of zeroes

appended to the message.

b. If (n = 2),

then s = 2,

Else

s = 0

Romi Banerjee et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 17-23

© JGRCS 2010, All Rights Reserved 21

ii. r = (n + s), where r is the new message length and r is

composite.

iii. Factorization of r into its factors p and q, as per

Equation 5.

iv. Using Equation 1, redundancy (Rrect_q) equals

rect _ q

(p 1)(q 1)
R

n
 (16)

 and using Equation 2,

 the total number of actual redundant bits

= s + total number of parity check bits
= s + (p + q + 1) (17)

where, s = 0 (if, n is composite), 1 (if n is a prime

number ≥ 3), 2 (if n = 2).

Analysis of the Algorithm II:

Using assumptions (1), (2) and (3), we arrive at the
following results:

a. The time to append the redundant zeroes

= time to append a single zero * number of redundant zeroes

= (1 * s) i.e., O(s) (18)

b. The time to evaluate the parity bits

= [time to evaluate the parity bits for the rows of the

rectangular code + time to evaluate the parity bits for the

columns of the rectangular code]

= (time to evaluate the parity bit for a single row * number

of rows) + (time to evaluate the parity bit for a single

column * number of columns)

= (number of bits in a single row * number of rows) +
(number of bits in a single column * number of columns)

 (19)

Now, after the parity bits for the rows (columns) are

calculated, the parity bits for the columns (rows) requires

evaluating the parity bits over (q + 1) columns [(p + 1)

rows]. Thus, Equation 19,

= (q * p) + [p * (q + 1)] [or, (p * q) + [q * (p +

1)]]

= [p(2q + 1)] [or, q(2p +

1)]
≤ 3n i.e., O(n2) (20)

c. Using Equations 18 and 20, the total time complexity

of the algorithm

= time to append the redundant zeroes + time to evaluate the

parity bits = O(s + n2) (21)

In the best case, s = 0 and the time complexity of the

algorithm reduces to Equation (20). In the worst case, s = 2

[when n = 2], and the time complexity of the algorithm

equates to O(2 + n2).

Inference:

For a given n-bit message M, we infer the following from

Equations 10-21:

a. Equations 10 and 11 acknowledge the sparse

distribution of perfect square integers across the

natural number space. Raising any arbitrary value „n‟

to its nearest perfect square integer, is indeed an
expensive operation.

b. Equations 10, and 16 yield equal results only if p = q =

sqr, i.e., when „n‟ is a perfect square. [This coincides

with the results in [1] – explained in the preceding

section].

c. Equations 16 and 17 yield lower values than those of

Equations 10 and 11 respectively, when „n‟ is not a

perfect square, i.e. (sqr2) > (n).

d. Equations 15 and 21 underline the time complexities

of the algorithms proposed for the square code and the

rectangular code formations, respectively. The 2-

dimensional codes, in the rectangular framework, are
clearly optimal.

The studies described in this section, essentially generalize

the formation of the square and the rectangular codes to that

for any given n-bit message – irrespective of the numeric

character of „n‟.

All of the aforementioned consequential deductions, thus,

formidably prove the rectangular code to be the coding

scheme that incorporates minimum redundancy and is thus,

the most „practically efficient‟ 2-dimensional code. The
inferences are further supported by Fig. 2 and Fig. 3.

Fig. 2 depicts plots corresponding to the number of extra

zeroes that need to be appended to any n-bit message to

evaluate the square and the rectangular codes. Fig. 3 depicts

plots corresponding to the total number of redundant bits for

both the square and the rectangular code formations given

any n-bit message. In both the figures, the rectangular code

achieves considerably lower values, for all values of „n‟.

Table 1 represents a tabular summarization of Fig. 2 and

Fig. 3.

Note: An extension of the described logic describes the

efficiency of the Rectangular codes in comparison to all the

other multi – dimensional code formats.

CONCLUSION

In this paper, we algorithmically, mathematically and

experimentally prove the rectangular code to be the most

„practically efficient‟ code.

We begin with a discussion on the established notion of the

efficiency of the square code, to later point out the sparse

distribution of the perfect square integers to be detrimental

to the notion. Conversion of a message to its square code is

indeed inefficient and expensive. The paper then presents

studies that establish the intuitive, highly efficient and

relatively cost effective character of the rectangular code.
Moreover, the rectangular code inherits the exceptional error

handling potential of the 2-dimensional coding systems. It

can thus be rightly concluded that the rectangular code is

definitely the most practically efficient scheme to enhance

the robustness of the existing intra-system digital

communication systems.

Further studies on the rectangular codes are alluring, and we

are in the process of its excavation.

Romi Banerjee et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 17-23

© JGRCS 2010, All Rights Reserved 22

Figure 2. Plot representing the number of zeroes to be appended to the given n – bit message, where „n‟ is an arbitrary integer, for the conversion to the square and

the rectangular codes. The rectangular code achieves minimum results for all values of „n‟, and coincides with the square code only when „n‟ is a perfect square.

Figure 3. Plot representing the total number of redundant bits in the square and the rectangular code of a given n – bit message, where „n‟ is an arbitrary integer. The

rectangular code shows minimum redundancy for all values of „n‟.

Romi Banerjee et al, Journal of Global Research in Computer Science, 3 (3), March 2012, 17-23

© JGRCS 2010, All Rights Reserved 23

Table 1. Tabular summarization of the plots in Fig. 1, Fig. 2 and Fig. 3. The rectangular code shows minimum overall redundancy requirements for all values of

„n‟ – irrespective of the numeric nature of „n‟ and is thus, evidently the most efficient code.

REFERENCES

[1]. R. W. Hamming, “Coding and Information Theory”, 2nd

Edition, Prentice Hall, U.S.A, 1986

[2]. R. P. Feynman, “Lectures on Computation”, Perseus Books

Groups, U.S.A, 1996

[3]. G. A. Jones and J. M. Jones, “Information and Coding

Theory”, Springer, Great Britain, 2000

[4]. E. Reingold, J. Nievergelt, N. Deo, “Combinatorial

Algorithms : Theory and Practice”, Prentice Hall, U.S.A,

1977

[5]. D. E. Knuth, “The Art of Computer Programming Volume 2 :

Seminumerical Algorithms”, 2nd Edition, Addison – Wesley,

U.S.A, 1981

[6]. B. A. Forouzan, “Cryptography and Network Security”, Tata

McGraw Hill, India, 2007

Short Bio Data for the Author

Romi Banerjee: Is currently a Master of Technology

(MTech) student of the Department of Computer Science and

Engineering, at the University of Calcutta, India. She is

currently working on Machine Intelligence under the

guidance of Professors Samar Sen Sarma (University of

Calcutta) and Sankar K. Pal (Former Director, Indian
Statistical Institute)

Saptarshi Naskar: Is a member of the faculty of the

Department of Computer Science at Sarsuna College, India.

 He is currently registered for his PhD on Graph Theory and

Cryptology under the University of Calcutta.

Professor Samar Sen Sarma : Is the founder member and

senior professor of the Department of Computer Science and

Engineering at the University of Calcutta (the first

multidisciplinary modern university in South Asia and the

oldest institution to have the „University‟ status). His current
research interests include Graph Theory, Quantum

Computing and Algorithms.

