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Abstract: In the Distributed Environment where shared resources are involved, we have basically two types of 

mechanism to  allocate  the  shared  resources:  either  by  passing  tokens  or  by  having  Request  and  Reply  

Messages.  In the shared environment, a processor might fail (i.e. may crash which may lead to failure). This paper 

proposes a fault tolerant token based  atomic  broadcast  algorithm  which  does  rely  on  unreliable  failure  detectors.  

It combines the failure detector and a token based mechanism, satisfying responsiveness property. The mechanism can 

tolerate processor level faults as compared to the existing system level failure, because the proposed system is relying 

on the unreliable failure detector and also rely on the responsive property. 
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I. INTRODUCTION 

 

The requirement for highly reliable and available services has been continuously increasing in many domains for 

the last decade. Several approaches for designing fault tolerant services exist. The focus of this chapter is on software 

replication. Replication allows a number of replicas to crash without affecting the availability of the service. Systems 

involving multiple processes are often most easily programmed using critical regions. When a process has to read or 

update certain shared data structures, it first enters a critical region to achieve mutual exclusion and ensure that no other 

process will use the shared data structures at the same time. Mutual exclusion (often abbreviated as  Mutex 

) algorithms are used in concurrent programming to avoid the simultaneous use of a common resource, such as a global 

variable, by pieces of computer code called critical sections ( CS ). A critical section is a piece of code in which 

a process or thread accesses a common resource continuously. A program, process, or thread can have the critical 

section in it without any mechanism or algorithm which implements mutual exclusion. 

 

      Atomic broadcast / Total order broadcast ensures that messages broadcast by different processes are delivered to all 

destination processes in the same order in which they are initiated. Atomic Broadcast enables ordering mechanism and 

tolerates failure. In asynchronous system with crash failures two most widely used mechanisms to tolerate failure in 

Atomic Broadcast algorithm are 1) Unreliable Failure Detector 2) Group Membership Function. 

     

An Unreliable Failure Detector does not provide consistent information about the failure status of processes. A 

Group membership service provides consistent membership information to all the members of a group. For example 

tell a process P that R has crashed, and to process Q that R is alive, at the same time. The overhead of a wrong failure 

suspicion is high when using a group membership. With group membership service, a wrong suspicion can lead to two 

costly membership operations: 1) removal of a process followed by, 2) addition of another process. 

 

With a failure detector, neither the removal nor the addition of process is needed. Atomic broadcast algorithms based 

on a failure detector can be used to implement the group membership service. 

 

II. CONTRIBUTION OF THIS PAPER 

 

This paper is a contribution to the ongoing research on the different fault tolerant mutual exclusion algorithms. 

The research done so far is done on the system level, where a number of systems are interconnected to a grid network. 

The existing system needs a number of computers and a huge backbone of network connection to establish the 
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experimental setup. And the experimental set up may suffer from any kind of unwanted failures that may be the failure 

of node or the communication network in either of the case we have to focus more on the communication network then 

on the node failure. 

 

 Here in this paper we focus on the process level failure in the system, which is a prototype of the real life 

communication system. In this paper, the existing features of the multi-core processor to simulate the behaviour of the 

grid computing environment by considering a small processor group are used. 

 

 This paper is an extension and modification of the Richard Ekwall [1] atomic broadcast algorithm, which was 

based on the unreliable failure detector. Here the focus is on the atomic broadcast of the process which will be using the 

unreliable failure detector and also satisfying the responsive property (RP). The quality of service [3] is also maintained 

in the course of failure detection process.  

 

 The failure is considered to be of crash [4] type. We are preparing a fault tolerant system which will definitely 

respond within a specified time limit, otherwise the checking for the failure or fault in the distributed system will be 

stopped and the process that does not reacted or obtained the resource will be declared as faulty and further that process 

will be removed from the Quorum. In this paper the main focus is on the tolerance level of the fault as well as on the 

atomic broadcast of the token which must be responded by other processes in a specified time interval. 

 
III. PROPOSED MODEL 

     

 The goal of designing the proposed scheme is to simulate the fault tolerance capability of a distributed system 

within a well specified time interval. 

 

The major concern of this approach is to have a  

 

Fault tolerant system: The system should be very sure and confirm that the system is either faulty or not faulty. It 

should confirm the status of the processor to either faulty or not faulty. If the processor is not crashed and able to 

perform its tasks properly then the processor is not faulty, otherwise faulty. 

 

Token Based: The systems that take part in the communication process should be able to enter into the critical section 

for execution only if it is having a valid token. So the processor that is having a valid token should enter into the critical 

section and other processors should try to acquire the token if it wants to enter into the CS. 

 

Responsive property: The whole system should response to the user query and check for the workability of a process 

within a specified time limit. The individual processor should try to execute the CS within the time span specified i.e. 

the processor are getting a time limit within which the individual process should response. If any processor is not 

responding for the 1
st
 time it should try to respond 2

nd
 time and so on till it reaches the time limit specified. 

  
IV. TERMINOLOGIES 

 

We use the following terminologies to describe the fault tolerance in the distributed system.  

 

The client is the individual processes that is responsible for performing the inter process communication. The client 

will be communicating to the local scheduler or the job manager for carrying out the operation. Here the client is the 

individual entity which is responsible for executing a specified task. The client or the processor should try to access the 

distributed task for execution. Here we assume that the client or the processor can only fail by crash. No other means of 

failure is accepted.  

 

 

The Scheduler or the job manager prepares the ready queue, which indicates which client will get access to the shared 

resource in the network. The scheduler takes the responsibility for providing each process a fair chance to execute the 

task by accessing the distributed resource. 

 

The worker is associated with individual scheduler or with the job manager. Each job manager has its own set of 

workers for performing the task. 
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Each scheduler has its own set of workers but may be associated with any number of clients. The distributed scheduler 

or the job manager take the responsibility of scheduling the user queries and it can do so by distributing its whole work 

among the workers.  The communication procedure of the client and the worker through the scheduler is shown in the 

following figure 1. 

 

 

Figure 1. Configuration with Multiple Clients and Job Managers 

 

 
V. PROPOSED ALGORITHM 

 

To implement the fault tolerant atomic broadcast algorithm we need to follow the following steps  

1. Divide the Job into a number of Tasks(LABS) 

2. The task holding token Access the Resource 

3. Start the timer for monitoring execution time 

4. If the task responded within timeOut  

Declare the Process as OK 

else 

              Declare the Process as Faulty 

             & Remove the process/task from ready Queue 

 
VI. IMPLEMENTATION DETAILS 

 

To implement the experimental setup in a single computer to simulate the behaviour of the distributed 

computing process we need the following configuration of the machine, which will facilitate us to see the behaviour of 

multi processor environment. 

 

 The multi core processor enables to perform different segments of a single work inside a single processor. 

The segments can be created and executed by a process called segmentation. The individual segments have the 

capability to distribute the whole job into small segments which can proceed independently .If there will be any inter 

dependency then the local scheduler will be handling the issues of task dependency and any issues of deadlock or 

starvation. 

 

Each individual task should have access to the primary memory and they should be executing their portion of 

work quickly. To facilitate this process we need at least 2GB of RAM. The more primary memory we have the faster 
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the task can be executed. The execution time or the running time of individual task can be enhanced by increasing the 

capacity of the primary memory. 

We need a configurable scheduler to allocate the resource to each task. The scheduler will be holding the 

responsibility of allocating the resource to each distributed task of the individual job. For the purpose of allocating 

resource to each task we can have a dedicated scheduler like High Performance Computing (HPC) Scheduler or we can 

also use the existing Scheduler present in the MATLAB. To implement and test the current working condition of fault 

tolerance mechanism, we have used the existing scheduler present in the MATLAB, the Load Sharing Facility (LSF) 

scheduler. The LSF scheduler is a pre-emptive scheduler. It allocates and manages the resources as per their priority.  

Here we are simulating the entire working environment in the MATLAB environment with proper configuration that is 

needed to create virtually a multiprocessor environment and study the behaviour of the whole system. 

  

VII. SIMULATION & RESULTS 

 
To simulate the experimental setup, we need to first create and configure a matalabpool which will enable us to 

simulate the multiprocessing environment, where we can have a distributed shared resource that each and every 

processor can access. So for that, we first create a local scheduler and define the maximum size of the cluster for the 

distributed task execution. We also need to set the path of the distributed job. This can be done by following the 

configuration option given below.  

 

Here after setting the cluster size, path of the shared resource, and the path of the default scheduler present in the 

MATLAB we need to validate the configuration setting, to check the workability of the whole system as a unity. The 

configuration should pass through all the steps for its correct working condition. For an i5 machine we can have at best 

a cluster size of 8. 

 

Initially the entire core of the machine has been divided into a number of partitions. Here each partition is a client, 

which is having the capability of performing the distributed task independently. The clients will be trying to access the 

shared resource to execute its CS within a specified time span. Each client is an independent task which executes the 

CS. In each run, the processor divides the whole task into a number of sub groups. For the case of a magic matrix, we 

divide the whole 8 x 8 matrix into 4 sub parts of 4 x 4 matrices. So that each task can proceed faster than, the original 8 

x 8 matrix operation. This kind of divisions helps to make better and faster utilization of the existing resource in an 

effective manner. 

 

From the observation, it’s very clear that the execution time of the above calculation by the individual processor or 

the client in the system as a whole is less than the whole task. The execution time for dividing the whole task and the 

actual calculation can be compared for performance measurement. The effect of distributed task scheduling and the 

performance enhancement by the division of the whole task into a number of sub groups, we find that the sub groups 

can run and execute faster than the system if it is taken as a whole.  

 

Figure 2. Simulation Result 

We have simulated all the results using MATLAB (7.10.0.499 (R2010a)) in Intel® Core (TM) i5 CPU M460 

@2.53GHz machine. 

 

According to this work, we have created twenty jobs and assigned them to a local scheduler. Once the task has 

been submitted to the local scheduler, the scheduler will be deciding which job will be executed. The job needs to be 
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selected from the pool of twenty jobs. The job that is selected will be performing its execution. The time taken by the 

client to create a job with varying number of tasks is shown in the figure 2(a). Here the plot shows the total amount of 

time taken by an individual processor for task creation. As we can see from the plot the time taken to create a job with 

increasing number of tasks is reducing with respect to the increasing number of task. So the job creation time will 

reduce substantially with the increasing number of tasks of a specified job.  

 

The simulation result 2(b) shows the task or worker creation time in the local scheduler. According to this 

graph the time taken to create a distributed partition with increasing number of workers is reducing. This indicates that 

by dividing the entire core into more sub groups the time for creation of task is gradually reducing and the capacity of 

handling the tasks concurrently is increasing. So by increasing the cluster size of the machine the processor can run 

faster than in normal condition. By following the above plot we can confirm that the distributed tasks can execute faster 

than the normal task. 

 

After the division of the whole job into a number of tasks we allow them to execute the CS (Fig 2(c)). The 

local scheduler will first randomly allocate the token to a task. The task that is having the token will get a fair chance to 

execute the CS. The processor or the task that have token should access the shared resource before the timeout is called. 

For this particular case I have allocated 20 milliseconds time for the CS execution. If any task is not responding for the 

1
st
 attempt in spite of having the token, then it should not stop there, by declaring the processor is faulty rather it will 

try till the timeout event is reached. If the task is still not able to access the shared resource, with having the token, then 

that process should be declared to be faulty. Here we assume that the crashed processor will only be not responding in 

spite of having a valid token. And once the processor completes its execution it should release the token to other 

processor that want to enter into the CS. 

 

After the task has completed its execution it should be destroyed from the memory, enabling other processors 

to access the distributed shared resource. The figure 2(d) shows the time taken by the controlling site to destroy the jobs 

form the local scheduler. 

 

 

Figure 3. Performance Measurement 

From the figure 3, we can see that the task failure rate was initially increasing with smaller number of tasks in 

a job. As the number of tasks increases the failure rate is gradually declining. Because at the initial stage, it may 

wrongly suspect a process to be faulty, but as per our proposed model the processor should not be declared to be faulty 

unless the processor is not at all responding within a specified time period. Here we are eliminating wrong suspicion of 

fault of a processor by allowing the task to execute its CS by acquiring the token, by sending continuously request for 

token to all other sites in the request queue. As the wrong fault suspicion is reducing and only the actual faults are 

identified the proposed model is having better performance that the normal fault tolerant mechanisms. 

 

VIII. CONCLUSION AND FUTURE SCOPE 

 
In this paper we have developed a process level fault tolerant mechanism which is based on the unreliable 

failure detector and the atomic broadcast mechanism which should be able to detect the failure within a specified time 

period to make an improved fault tolerant mechanism. It combines the failure detector and a token based mechanism, 

satisfying responsiveness property. The mechanism can tolerate processor level faults as compared to the existing 
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system of system level failure, because the proposed system is relying on the unreliable failure detector and also rely on 

the responsive property. 

 

There still remain many open problems in the search for efficient and accuracy in the fault tolerance mutual 

exclusion algorithms. 

 

These are some of the interesting open problems like: 

• Implementing Deadlock Prevention while Resource Allocation rather than using the Deadlock avoidance 

which is not so efficient for distributed system which is increasing the overhead. 

• At present we are having a single control site for resource allocation, but we can have a Distributed 

Controlling Site for Resource Allocation for making the fault tolerance mechanism livelier. 

• Introduction of Intelligence system for fault Detection so that the time taken for detecting a fault can be 

minimized and optimized. 
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