
Volume 4, No. 3, March 2013 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

© JGRCS 2010, All Rights Reserved   10 

A FINEST TIME QUANTUM FOR IMPROVING SHORTEST REMAINING BURST 

ROUND ROBIN (SRBRR) ALGORITHM 

P.Surendra Varma 

Department of computer science & Engineering NRI Institute of technology 

Vijayawada, Andhra Pradesh, India 

Surendravarma008@gmail.com 

Abstract- Round Robin (RR) performs optimally in timeshared systems because each process is given an equal amount of static time quantum. 

But the effectiveness of RR algorithm solely depends upon the choice of time quantum. I have made a comprehensive study and analysis of RR 

algorithm and SRBRR algorithm. I have proposed an improved version of SRBRR (Shortest Remaining Burst Round Robin) by assigning the 

processor to processes with shortest remaining burst in round robin manner using the best possible time quantum. Time quantum is computed 

with the help of median and highest burst time. My experimental analysis shows that ISRBRR performs better than RR algorithm and SRBRR in 

terms of reducing the number of context switches, average waiting time and average turnaround time. 

 

Keywords: Operating System, Scheduling Algorithm, Round Robin, Context switch, Waiting time, Turnaround time. 

INTRODUCTION 

A process is an instance of a computer program that is being 

executed. It includes the current values of the program 

counter, registers, and variables. The subtle difference 

between a process and a program is that the program is a 

group of instructions whereas the process is the activity. The 

processes waiting to be assigned to a processor are put in a 

queue called ready queue. The time for which a process 

holds the CPU is known as burst time. Arrival Time is the 

time at which a process arrives at the ready queue. The 

interval from the time of submission of a process to the time 

of completion is the turnaround time.. Waiting time is the 

amount of time a process has been waiting in the ready 

queue. The number of times CPU switches from one process 

to another is known as context switch. The optimal 

scheduling algorithm will have minimum waiting time, 

minimum turnaround time and minimum number of context 

switches. 

PRELIMINARIES 

Basic Scheduling Algorithms: 

First Come First Serve (FCFS): 

In this algorithm, the process to be selected is the process 

which requests the processor first. This is the process whose 

PCB is at the head of the ready queue. Contrary to its 

simplicity, its performance may often be poor compared to 

other algorithms. FCFS may cause processes with short 

processor bursts to wait for a long time. If one process with 

a long processor burst gets the processor, all the others will 

wait for it to release it and the ready queue will be filled 

very much. This is called the convoy effect. 

Shortest Job First (SJF): 

In this strategy the scheduler arranges processes with the 

Burst times in the ready queue, so that the process with low 

burst time is scheduled first. If two processes having same 

burst time and arrival time, then FCFS procedure is 

followed. 

Shortest Remaining Time First (SRTF): 

This is same as the SJF with pre emption, which small 

modification. For scheduling the jobs system need to 

consider the remaining burst time of the job which is 

presently executed by the CPU also along with the burst 

time of the jobs present in the ready queue. 

Priority Scheduling Algorithm: 

It provides the priority to each process and selects the 

highest priority process from the ready queue. A priority 

scheduling algorithm can leave some low-priority processes 

in the ready queue indefinitely. If the system is heavily 

loaded, it is a great probability that there is a higher priority 

process to grab the processor. This is called the starvation 

problem. One solution for the starvation problem might be 

to gradually increase the priority of processes that stay in the 

system for a long time. 

Round robin Scheduling Algorithm: 

Round Robin (RR) is one of the oldest, simplest, and fairest 

and most widely used scheduling algorithms, designed 

especially for time-sharing systems. Here every process has 

equal priority and is given a time quantum after which the 

process is preempted. The OS using RRS, takes the first 

process from the ready queue, sets a timer to interrupt after 

one time quantum and gives the processor to that process. If 

the process has a processor burst time smaller than the time 

quantum, then it releases the processor voluntarily, either by 

terminating or by issuing an I/O request. The OS then 

proceed with the next process in the ready queue. On the 

other hand, if the process has a processor burst time greater 

than the time quantum, then the timer will go off after one 

time quantum expires, and it interrupts (preempts) the 

current process and puts its PCB to the end of the ready 

queue. 

 

Any CPU scheduling algorithm relies on the following 

criteria. They are: 

a. Processor Utilization: The ratio of busy time of the 

processor to the total time passes for 



P.Surendra Varma et al, Journal of Global Research in Computer Science, 4 (3), March 2013, 10-15 

© JGRCS 2010, All Rights Reserved   11 

processes to finish. We would like to keep the processor as 

busy as possible. 

Processor Utilization = (Processor buy time) / (Processor 

busy time + Processor idle time) 

b. Throughput: The measure of work done in a unit time 

interval. 

Throughput = (Number of processes completed) / (Time 

Unit) 

c. Turnaround Time (tat): The sum of time spent waiting 

to get into the ready queue, 

Execution time and I/O time. 

tat = t(process completed) – t(process submitted) 

d. Waiting Time (wt): Time spent in ready queue. 

Processor scheduling algorithms only affect the time 

spent waiting in the ready queue. So, considering only 

waiting time instead of turnaround time is generally 

sufficient. 

e. Response Time (rt): The amount of time it takes to 

start responding to a request. This criterion is 

important for interactive systems. 

rt = t(first response) – t(submission of request) 

 

We, normally, want to maximize the processor utilization 

and throughput, and minimize tat, wt, and rt. However, 

sometimes other combinations may be required depending 

on to processes. 

RELATED WORK 

In the last few years different approaches are used to 

increase the performance of Round Robin scheduling like 

Adaptive Round Robin Scheduling using Shortest Burst 

Approach Based on Smart Time Slice[1], Multi-Dynamic 

time Quantum Round Robin (MDTQRR)[5].Min-Max 

Round Robin (MMRR)[2], Self-Adjustment Time Quantum 

in Round Robin (SARR)[10], Dynamic Quantum with Re-

adjusted Round Robin (DQRRR)[11],Average Max Round 

Robin Algorithm (AMRR)[8]. In this paper also Efforts 

have been made to modify SRBRR in order to give better 

turnaround time, average waiting time and minimize context 

switches. 

PROPOSED ALGORITHM 

The proposed algorithm works as follows: 

a. All the processes present in ready queue are sorted 

in ascending order. 

b. While (ready queue! = NULL) 

TQ = Ceil (sqrt (median * highest Burst time)) 

c. Assign TQ to process 

Pi ->TQ  

d. If (i<n) then go to step 3 

e. If a new process is arrived, 

Update the counter n and go to step1 

End of while 

f. Average waiting time, average turnaround time and 

Number  of context switches are calculated. 

g. End 

 

 

 

 

Flowchart: 

 

EXPERIMENTS & RESULTS 

Assumptions: 

All experiments are assumed to be performed in 

uniprocessor environment and all the processes are 

independent from each other. Attributes like burst time and 

priority are known prior to submission of process. All 

processes are CPU bound. No process is I/O bound. 

Processes with same arrival time are scheduled. 

Illustration and Results: 

Case-I :   

Let us assume five processes, with increasing burst time (P1 

= 13, P2 = 35, P 3 = 46, P4 = 63, p5= 97) as shown in 

TABLE. 

 
Process Burst Time 

P1 13 

P2 35 

P3 46 

P4 63 

P5 97 

 

Now, as per the algorithm Time Quantum is calculated as 

follows 

 

TQ = Ceil (sqrt (median * highest Burst time)) 

 

TQ = Ceil (sqrt(46 * 97)) = 67 

P1 P2 P3 P4 P5 P5 

0      13        48         94       157      224     254  

Number of Context Switches = 5 

Average Waiting Time = (0+13+48+94+157) / 5 = 62.4 

Average Turn around Time = (13+48+94+157+254) / 5 = 

113.2 

Table I: Comparison between RR, SRBRR and Proposed algorithm (case – 

I) 

Algorithm Time 

Quantum 

Avg.TAT Avg.WT CS 

RR 25 148.2 97.4 11 

SRBRR 46 122.4 71.6 7 

ISRBRR 72 113.2 62.4 5 



P.Surendra Varma et al, Journal of Global Research in Computer Science, 4 (3), March 2013, 10-15 

© JGRCS 2010, All Rights Reserved   12 

 
 

Case II:  

Let us assume five processes arriving at time = 0, with 

decreasing burst time (P1 = 86, P2 =53, P 3 = 32, P4= 21, 

p5= 9) as shown in TABLE 
 

Process Burst Time 

P1 86 

P2 53 

P3 32 

P4 21 

P5 9 

Now , TQ can be calculated as follows : 

TQ = Ceil (sqrt (median * highest Burst time)) 

TQ = Ceil (sqrt( 32 * 86)) = 53 

 

P5 P4 P3 P2 P1 P1 

0      9         30          62       115       168     201 

 

Number of Context Switches = 5 

Average Waiting Time = (0+9+30+62+115) / 5 = 43.2  

Average Turnaround Time = (9+30+62+115+201) / 5 = 83.4 

Table 2: Comparison between RR, SRBRR and Proposed algorithm (case – 

II) 

Algorithm Time 

Quantum 

Avg.TAT Avg.WT CS 

RR 25 150.8 110.5 10 

SRBRR 32 89.8 49.6 7 

ISRBRR 59 83.4 43.2 5 

 

 
 

Case-III: 

Let us Assume five processes arriving at time = 0, with 

random burst time (P1 = 54, P2 = 99, P 3 = 5, P 4 = 27, p5= 

32) as shown in TABLE 
 

Process Burst Time 

P1 54 

P2 99 

P3 5 

P4 27 

P5 32 

 

Now , TQ can be calculated as follows : 

TQ = Ceil (sqrt (median * highest Burst time)) 

TQ = Ceil(sqrt(32*99)) = 57 

 

P3 P4 P5 P1 P2 P2 

0       5       32        64         118        175     217 

 

Number of Context Switches = 5 

Average Waiting Time =  (0+5+32+64+118) / 5  = 43.8 

Average Turnaround Time =  (5+32+64+118+217) / 5 = 

87.2 

Table III: Comparison between RR, SRBRR and Proposed algorithm (case 

– III) 

Algorithm Time 

Quantum 

Avg.TAT Avg.WT CS 

RR 25 152.2 108.8 11 

SRBRR 32 93.6 50.2 7 

ISRBRR 66 87.2 43.8 5 

 

 

Implementation: 

The algorithm is implemented using C language and its code 

is as follows: 

Source Code 

#include<stdio.h> 

#include<conio.h> 

#include<math.h> 

int st[10]; 

int get_tq(int b[],int s) 

{ 

int i,j,maxbt,tmp,hbt,median; 

float k,l,m; 

for(i=0;i<s;i++) 

{ 

for(j=i+1;j<s;j++) 

{ 

 if (b[i]>b[j]) 

0
20
40
60
80

100
120
140
160

Number of 
context 
switches

Average 
waiting 

time

Average 
Turn 

around 
time

RR

SRBRR

ISRBRR

0
20
40
60
80

100
120
140
160

Number of 
context 
switches

Average 
waiting 

time

Average 
turnaround 

time

RR

SRBRR

ISRBRR

0

50

100

150

200

Number of 
context 
switches

Average 
waiting 

time

Average 
turnaround 

time

RR

SRBRR

ISRBRR



P.Surendra Varma et al, Journal of Global Research in Computer Science, 4 (3), March 2013, 10-15 

© JGRCS 2010, All Rights Reserved   13 

 { 

  tmp=b[i]; 

  b[i]=b[j]; 

  b[j]=tmp; 

 } 

} 

} 

hbt=b[i-1]; 

median=b[i/2]; 

for(i=0;i<s;i++) 

st[i]=b[i]; 

l=(float)hbt; 

m=(float)median; 

k=sqrt((l*m)); 

return(ceil(k)); 

} 

void main() 

{ 

int bt[10],wt[10],tat[10],n,tq; 

int i,count=0,swt=0,stat=0,temp,sq=0; 

float awt=0.0,atat=0.0; 

clrscr(); 

printf("Enter number of processes:"); 

scanf("%d",&n); 

printf("Enter burst time for sequences:"); 

for(i=0;i<n;i++) 

{ 

scanf("%d",&bt[i]); 

st[i]=bt[i]; 

} 

tq=get_tq(st,n); 

printf("\ntime quantum is computed by 

ceil((highestbt+Median)/2) = %d\n",tq); 

while(1) 

{ 

for(i=0,count=0;i<n;i++) 

{ 

temp=tq; 

if(st[i]==0) 

{ 

count++; 

continue; 

} 

if(st[i]>tq) 

st[i]=st[i]-tq; 

else 

if(st[i]>=0) 

{ 

temp=st[i]; 

st[i]=0; 

} 

sq=sq+temp; 

tat[i]=sq; 

} 

if(n==count) 

break; 

} 

for(i=0;i<n;i++) 

{ 

wt[i]=tat[i]-bt[i]; 

swt=swt+wt[i]; 

stat=stat+tat[i]; 

} 

awt=(float)swt/n; 

atat=(float)stat/n; 

//printf("Process_no\t Burst time\t Wait time\t Turn around 

time\t"); 

//for(i=0;i<n;i++) 

//printf("%d\t %d\t %d\t %d\t",i+1,bt[i],wt[i],tat[i]); 

printf("\nAvg waiting time is %f\nAvg turn around time is 

%f",awt,atat); 

getch(); 

} 

Output: 

Enter number of processes:5 

Enter burst time for sequences: 

13 

35 

46 

63 

97 

Time quantum is computed by ceil(Sqrt(highestbt*Median)) 

= 67 

Avg waiting time is 62.400002 

Avg turn around time is 113.199997 

Simulation and Screen shots 

Turbo C++ is used in order to simulate the source code. 

Here are some screen shots of simulation process. 

 

 



P.Surendra Varma et al, Journal of Global Research in Computer Science, 4 (3), March 2013, 10-15 

© JGRCS 2010, All Rights Reserved   14 

Output simulation for case-I 

 

 
 

CONCLUSION AND FUTURE WORK 

From the above comparisons i can conclude that the 

proposed algorithm is performing better than the static RR 

algorithm and SRBRR algorithm in terms of average 

waiting time, average turnaround time and number of 

context switches. In future work, processes at different 

arrival times can be considered for the proposed algorithm. 

REFERENCES 

[1]. Sarojhiranwal and D.r. K.C.Roy“Adaptive Round Robin 

Scheduling using Shortest Burst Approach Based on Smart 

Time Slice”.volume 2,issue 3. 

[2]. Sanjay Kumar Panda and Saurav Kumar Bhoi, “An 

Effective Round Robin Algorithm using Min-Max 

Dispersion Measure” ISSN : 0975-3397 ,Vol. 4 No. 01, 

January 2012.  

[3]. “Tanebaun, A.S., 2008” Modern Operating Systems. 3rd 

Edn., Prentice Hall, ISBN: 13:9780136006633, pp: 1104.  

[4]. “Silberschatz, A., P.B. Galvin and G. Gagne, 2008” 

Operating Systems Concepts. 7th Edn., John Wiley and 

Sons, USA., ISBN: 13: 978-0471694663, pp: 944. 

[5]. H. S. Behera, Rakesh Mohanty, Sabyasachi Sahu and 

Sourav Kumar Bhoi.” Comparative performance analysis 

of multi-dynamic time quantum round robin (mdtqrr) 

algorithm with arrival time”, ISSN : 0976-5166, Vol. 2, 

No. 2, Apr-May 2011.  

[6]. “Tarek Helmy, Abdelkader Dekdouk” Burst Round Robin: 

As a Proportional-Share Scheduling Algorithm, IEEE 

Proceedings of the fourth IEEE-GCC Conference on 

towards Techno-Industrial Innovations, pp. 424-428, 11-14 

November,2007 

[7]. “Yaashuwanth .C & R. Ramesh” Inteligent time slice for 

round robin in real time operating system, IJRRAS 2 (2), 

February 2010. 

[8]. Pallab banerjee, probal banerjee, shweta sonali 

dhal,”Comparative Performance Analysis of Average Max 

Round Robin Scheduling Algorithm (AMRR) using 

Dynamic Time Quantum with Round Robin Scheduling 



P.Surendra Varma et al, Journal of Global Research in Computer Science, 4 (3), March 2013, 10-15 

© JGRCS 2010, All Rights Reserved   15 

Algorithm using static Time Quantum”,IJITEE,ISSN: 

2278-3075, Volume-1, Issue-3, August 2012.  

[9]. J. Nieh, C. Vaill and H. Zhong, “Virtual-Time Round-

Robin: An O(1) Proportional Share Scheduler”, 

Proceedings of the USENIX  

[10]. R. J. Matarneh, “Seif-Adjustment Time Quantum in Round 

Robin Algorithm Depending on Burst Time of the Now 

Running Proceses”, American Journal of Applied Sciences 

6 (10), pp. 1831-1837, 2009. 

[11]. H. S. Behera, R. Mohanty, and D. Nayak, “A New 

Proposed Dynamic Quantum with Re-Adjusted Round 

Robin Scheduling Algorithm and Its Performance 

Analysis,” vol. 5, no. 5, pp. 10-15, August 2010. 

[12]. A. Bhunia, “Enhancing the Performance of Feedback 

Scheduling”, IJCA, vol. 18, no. 4, pp. 11-16, March 2011.  

[13]. “Prof. Rakesh Mohanty, Prof. H. S. Behera, Khusbu 

Patwari, Manas Ranjan Das, Monisha Dash,Sudhashree” 

Design and Performance Evaluation of a New Proposed 

Shortest Remaining Burst RoundRobin (SRBRR) 

Scheduling Algorithm, Am. J. Applied Sci., 6 (10): 1831-

1837, 2009. 

 

Short Bio data for the Author  profile 

 

      
P.Surendra Varma  received his M.Tech Computer science 

Engineering from Acharya Nagarjuna university campus. He 

is working as an Associate Professor in NRI institute of 

technology, Vijayawada. His research interests includes 

Bioinformatics, compression techniques, operating systems, 

theory of computation, compiler design, programming 

languages, data mining and warehousing, software 

engineering. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


