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INTRODUCTION
Most of the useful integral formulas in Riemannian geometry are obtain by computing the divergence of certain vector 

fields and then apply the divergence theorem. In the authors gave a flux formula. In particular, they derive a similar balancing 
formula given by Rosenberg [2]. As an application to this flux formula they gave an estimation of the higher order mean curvature 
Hr of a hypersurface in space forms by the geometry of its boundary [1]. Motivated by the work of these authors, we give in this 
work a flux formula in the case of weighted manifolds. Recall that a weighted manifold (called also a manifold with density) is 
a Riemannian manifold M endowed with a smooth positive density e-f with respect to the Riemannian measure. We proof the 
following proposition.

Proposition 1

Let n+1nÑ Μ⊂ an oriented connexion sub-manifold of n+1
Μ  and n-1 nÑ∑ ⊂  a compact hyper-surface of Pn . Let ϕ : ( )n-1 Mϕ∑ = ∂  

a compact oriented hyper-surface of boundary ( )n-1 Mϕ∑ = ∂  Denoting by N the global vector fields normal to Mn, and ν the 
outpointing vector normal to n-1∑ in Mn. Then for 1 ≤ k ≤ n and for every conformal vector field ( )n+1

Y χ Μ∈ , we have

,, ,Y N,YT
k f f k f r r f f f k f
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∂

= − − φΗ −∫ ∫ ∫ ∫
Where kσ

∞  is the weighted Newton transformations, and Hr,f is the weighted higher order mean curvature.

As a consequence of this proposition, we obtain some special cases. In particular, we obtain a balancing formula for 

kσ
∞ - minimal hyper-surface in space forms. The paper is organized as follows. Section 2 provides some preliminaries. The main 

results of the paper are contained in Section 3. Throughout the paper everything (manifolds, metrics, etc.) is assumed to be C∞ 

-differentiable and oriented [3-5].

Preliminaries

In this section we introduce the basic notations used in the paper. we will recall some definitions and properties of the 
weighted symmetric functions and the weighted Newton transformations. For more details see [3],[7].

Let M  be a ( 1)n + -dimensional Riemannian manifold. Let MM →:ψ   be an isometrically immersed hypersurface. 
Denoting by M  and M the Levi civita connections of M  and M  respectively. Then, the Weingarten formulae of the hypersurface 
is written as
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	 ( )= XAX N− ∇
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Where Τ  is the shape operator of the hypersurface M with respect to the Guass map N, and Τ  denotes the orthogonal 
projection on the vector bundle tangent to M,

It is well know that A is a linear self adjoint operator. At each point  p∈M, its eigenvalues 1,..., nµ µ  are the principales 
curvatures of M [6,7].

Associate to the shape operator A , define the weighted elementary symmetric fucntions  →×∞ n
k :σ  recursively 

by:
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Where 0µ ∈  and ( ) n
n ∈µµµ ,...,= 1 .

In particular )(=)(0, µσµσ kk
∞  is nothing but the classical elementary symmetric functions define in [8].

Definition 

The weighted Newton transformations  (W.N.T) 0( , )kT Aµ∞  are define inductively form A  by

0

0 0 1 0

( , ) =
( , ) = ( , ) ( , ) for 1

k

k k k

T A I
T A A I AT A k

µ
µ σ µ µ

∞

∞ ∞ ∞
−




− 

Where ).(M  denote the identity of ).(M  

Or equivalentely by  ( )0 0=0
( , ) = 1 ( , )

n j j
k k jj

T A A Aµ σ µ∞ ∞
−−

Where 0 0 1( , ) = ( , ,..., )k k nAσ µ σ µ µ µ∞ ∞    and nµµ ,...,1  are the eigenvalues of ∞∞
kk TAT =),( 0µ
. 

We denote to simplify ∞∞
kk TAT =),( 0µ  and 0( , ) = .k kAσ µ σ∞ ∞

In particular 0( , ) = ( )k kT A T Aµ∞  is the classical Newton transformations introduced in [8]

These two quantities has the same proprietes of the classical symmetric functions and Newton transformations [3].

Proposition  2

For ∈10 ,µµ  and ( ) n
n ∈µµµ ,...,= 1  we have:
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For { }1,...,i n∈  we have ∞
−

∞∞ − ikikik 1,, = σµσσ
And the ∞

kT  eigenvalue of ∞
kT  is equal to ∞

ik ,σ
Where ( ), 0 1 1 1= , ,..., , ,...,k i k i i nσ σ µ µ µ µ µ∞ ∞

− +

Definition 1:  The weighted thr  mean curvature frH ,  is given by:

, = ( , , )r f r

n
H f

r
σ ν ν∞ 

− ∇ ∇ 
 
Where ν  is the outpointing vectors field normal to M in .M  

In particular for = 1,r  we have  fnHH f ∇− ,= ν

Is the weighted mean curvature of the hypersurface M

Definition 2: We say that an hypersurface M of −∞
rσ  is −∞

rσ minimal, if , = 0.r fH
In particular; M  is −f minimal, if = 0fH . Or equivalentely = ,H n fν ∇  

Definition 3:  The weighted divergence of the weighted Newton transformations is define by: 

( )∞−∞
k

ff
kf TediveTdiv =
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Where

( ) ( ) ( )( )
=0

= =
k

k k e k iij
div T trace T T e∞ ∞ ∞∇ ∑ ∇

And {e1,…,en} is an orthonormale basis of the tangent space of M. 

In particular, if f vanish identiqualy and µ=0, then we obtain the classical difinition of the divergence of the Newton 
tranformations.

I found here some isoperimetrics inequalities. Now I am trying to find a variational formula for the wighted higher order 
mean curvature [9].

CONCLUSION
In conclusion, my steps are:

1. Calculate the divergence ( ).∞
kTdiv  (The fact that we calculate this quantity is to use it in the two last steps by using the 

divergence theorem for the weighte Newton transformation).

2. Compare ( , , ).r f Iσ ν ν λ∞ − ∇ ∇ +

3. Find variation (critical point) for frH ,  ( 0=, frH ).

4. Minimise 0.=, frH  to get 0.=, frH

Forn the two first points, I found the way.

I think the two last ones are equivalent to the study of the variation ( , , )M r gf dvσ ν ν∞ − ∇ ∇ .

If you have an idea about how we study the two last points, because if we can find such

realtion, this result gives a geometric interpretation of our quantity ( frH , ).
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