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I INTRODUCTION

In this paper (X,d) denotes a metric space, and A, B, S and T self-maps on X.

Definition 1: A and S are compatible [1] if
lim d(ASx,,SAx ,)=0 (1)

N—o0
whenever {x }, is a sequence in X such that
lim Ax, = lim S =t 2)

n—oo n—oo
forsome t e X .

Definition 2: A and S are compatible of type A [3] if
lim d(ASx,,S% ,)=0and lim d(ASx,, AAxp)=0 3)

n—00 N—0
whenever {x,} ;< X has the choice (2).

It is known that Definition 1 and Definition 2 are equivalent if both S and A are continuous, but are independent of each
other in general. Individual conditions in (3) define the following two weaker forms of Definition 2, as given in [3].

Definition 3(a): A and S are A-compatible if lim d(AS(n,SS< n):O whenever (2) holds good for some

N—00

Xn} g X,

Definition 3(b): A and S are S-compatible if lim d(SAxn,AAxn):O whenever (2) holds good for some
N—o0

{Xn};ozl = X :

With these notions Rahman et al. [3] proved the following.
Theorem 1. Let A, B, Sand T be self-maps on X satisfying the inclusion
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AX) < T(X),B(X)=S(X) @
and the inequality
[d(Ax, By )] <ad(Ax,Sx )d(By, Ty) + bd(By, S Jd(Ax, Ty)+ cd(Ax, S )d(Ay, Ty)
+ed(By,Ty)d(By,Sx)+fd2(Sx,Ty)
for all x,ye X, (5)

where a, b, ¢, e and f are nonnegative number such thata+b +2c+e+f<1.
Given Xg eX there exist points Xy, Xz, ... in X such that

Axan—2 = TXgn_1 =Y2n-1 a@nd Bxpn_1 =&Xn =y2n,N=1,2,3, ... (6)
and the sequence {yn}lcff:1 is a Cauchy sequence. Further suppose that X is complete,

(@ oneofA B,SandT is continuous, and
(b) (A,S)and (B,T) are either A- compatible or S-compatible.
Then A, B, S and T will have a unique common fixed point.

In this paper we obtain a generalization of Theorem 1 by
o relaxing the completeness of X,
o weakening the inequality (5),
e dropping the continuity condition (a), and
¢ weakening the notion of A and S compatibilities.

. MAIN RESULT
Definition 4 (cf. [2]): Self-maps A and S are weakly compatible if they commute at their coincidence point.

Remark 1: It is easily seen that Definition 1 and Definitions 3(a)-3(b) imply Definition 4. That is weak compatibility is
a weaker than compatibility, A and S-compatibilities.

Theorem 2. Let A, B, S and T be self-maps on X satisfying the inclusions (4) and the inequality
dZ(Ax,By)Sqmaxd(Ax,Sx)d(By,Ty),d(By,S<)d(Ax,Ty)+%d[(Ax,S<)d(Ax,Ty)]
d(By,Ty)d(By,S<)+d2(S<,Ty)} forall x,yeX, @)

where 0<9<1.

Suppose that
()  T(X)NS(X) is a complete subspace of X, and

d) (AS)and (B, T) are weakly compatible.
Then A, B, S and T have a unique common fixed point.
Proof. Let X,€ X be arbitrary. Using (4) the sequence {yn}“::l can be inductively defined with the choice (6).
Consider tp =d(yn1,yn) for N1=1,2,3,... We assume that t, >0 for all n.

Now taking X =Xpp Y =Xpn_1 in (7) and then usuing (6),

d2(Ax 2n,Bx 2n_1)<qmaxd (Axon,SX 20 )d(Bx 201, Ty2n 1)

1
d(BX 2n-1, 5% 2n J(Ax 2, TXZn—l):Ed[(AX 2n X 2n J(AX2n, Txon-1)],
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d(BX 201, TX2n—1 )Jd(BX 21,5 2n )+ d2(SX 21 vTX2n—1)}

= d®(Y2ns1:Yon ) <AmMaxd (Yoni1, Yo J)A(Y2n, Yon 1)
d2 (y2n+l! y2n ) Sq maX{d (y2n+1’ y2n )d (y2n’ y2n—1)1 d (yZn’ y2n)d (y2n+1’ y2n—1)’

1
Ed [( Yonir Yon ) d (y2n+11 Yona ):'1 d(y2n,Y2n-1)d(y2n.y2n ) d? (Yon.Y2na )}

1
= thy < qmax{tzn t2nl,E[th(thlthZn)]'t%n}- (8)

1 1
If toy > ton_g then ton -ton_q <t3, so that E[t%n +ton - ton_1] <ty or Sltan +tan 1] < t3, .

Using this in (8), we get
2 1 2 2 2
0<tih<q max{th ton-1, Eth(th—l +1on )’th} <q 1ty <tgp

which is a contradiction since 0 <q<1. Therefore
t,, <t,,, foralln. 9)

Then using (9) in (8), we see that
t8,<qt3,_1 forall n>2. .. (10)

With a similar argument, we can show that

2 2
t5,q <at5,_, forall n=>2. o (11)

Repeatedly applying (10) and (11), it follows that
ton <0 t2n_1£q2t%n_2 qut%n_3 <. qun_ltz forall n>2.

Applying the limit as n — o, (11) gives limt, =0, that is d(yZn,y2n+1)—>0 as N — oo, which implies that
n—oo
{y,},., is Cauchy sequence in T(X)NS(X).

Then by (c), we see that
lim yon_1 = lim Axpp_2 = lim Txop_1 = lim yo, = lim Bxoy_g = lim &, =z .. (12)
Nn—»o0 n—»o0 Nn—»o0 N—o0 Nn—»o0 Nn—»o0
For some z e T(X)NS(X) so that ze T(X) and z e S(X).
Now z € T(X) implies that z="Tp for some p e X. e (13)

We show that Bp =Tp==z
Taking X =Xpn y=p in(7) we get
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d%(Ax 21, Bp) <qmaxd (Axon, X 20 J(Bp, Tp), d(Bp, Tp)(BP,X 20 )+ 42(SK 20, Tp)|

(B, 20 JA(AX a0 TP)+5 dllAxan S on Hi(Axzq o]
Applying the limit as N — oo, in this and using (12) and (13), we get
d?(z,Bp)<qmax{0,0,0,d? (Bp, z),0} = qd % (Bp, z) so that Bp =z .
Thus Bp =Tp = z. This in view of weak compatibility of B and T gives
Bz=Tz. (14)
Again z e S(X) implies that z =S¢ for some ¢ e X. (15)

Then we show that A/ =S¢ =z.

Substituting X = ¢ and Y = X,,,_,in (7), and using (12) and (15), we get

d?(Ar, Bx pn_1)<qmaxd (A%, S0)d(BX 21, Txzn-1), d(BX2n1,SO(AL, Txon )}

1
Ed[(Afl SO(AL Txan-1 )} d(BX 2n-1, Txon1 Jd(Bx 21, 5¢)+d?(St, TXZn—l)}

Applying limitas n — oo,
d?(Ar,z)<q max{0,0,%[d(Aﬁ, z)d(A, z),0,0]} = q%dz(Af, z)} , which is a contradiction.

Hence A¢=z.Thus A/ =S¢ =z. By weak compatibility of (A,S), we get AS/ =SA/¢ or
Az=S5z7. .. (16)

Writing X = Y = Z in the inequality (7), and using (14) and (16), we get
d?(Az,Bz) <qmax{d(Az,Sz)d(Bz,Tz), d(Bz, & )(Az T2)

%d[(Az,Sz )i(Az, T2)} d(Bz, T2)d(Bz, Sz )+ d? (2, TZ)}

< qmax{0,d(Bz, Az)l(Az,B2)0,0,d? (Az, Bz} =qd’ ( Az, Bz)= Az =Bz.

Therefore from (14) and (16), it follows that
Az=Bz=Sz=Tz. . @n
Taking X =2,Y = X,,_,in (7), and using (12) and (17), we get

d? (Az, Bx on_1) < max{d(Az, Sz )d(Bx 2n_1, Tx2n—1 ), d(BX 201,52 )+ d(Az, Txzn1),
1
Ed[(Az, Sz )d(Az, Txn-1 )] d(Bz 251, TX2n71)d(BX 2n71,32) d?(s, TXan)}
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Applying limitas N — oo,

d?(Az,z)<qmax{0,d(z, Az)d(Az,2),0,0,d(Az,2)} = qd (Az,2)=>Az=1z.
In view of (17) then it follows that z is a common fixed point of self-maps A, B, Sand T.

Uniqueness of the common fixed point follows easily from the inequality (7).

Remark 2. The completeness of the space X is restricted to that of its subspace, namely T(X)(S(X) (cf. Condition

(c) of Theorem 2). Condition (b) imples (d) in view of Remark 1. Further the inequality (5) implies (7) with the choice
g=a+b+2c+e+f . Itisimportant to note that the continuity of none of the four maps is needed to obtain a fixed

point. Thus Theorem 2 is a generalization of Theorem 1.
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