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ABSTRACT: Brain-computer interfaces (BCIs) allow a user to directly control devices such as cursors and robots 
using brain signals. Non-invasive BCIs, e.g., those based on electroencephalographic (EEG) signals recorded from the 
scalp, suffer from low signal- to-noise ratio which limits the bandwidth of con- trol.  Invasive BCIs allow fine-grained 
control but can leave users exhausted since control is typi- cally exerted on a moment-by-moment basis.  In this paper, 
we address these problems by proposing a new adaptive hierarchical architecture for brain- computer interfacing. The 
approach allows a user to teach the BCI new skills on-the-fly; these learned skills are later invoked directly as high-level 
com- mands, relieving the user of tedious low-level con- trol. We report results from four subjects who used a 
hierarchical EEG-based BCI to successfully train and control a humanoid robot in a virtual home en- vironment. 
Gaussian processes were used for learn- ing high-level commands, allowing a BCI to switch between autonomous and 
user-guided modes based on the current estimate of uncertainty. We also re- port the first instance of multi-tasking in a 
BCI, in- volving simultaneous control of two different de- vices by a single user. Our results suggest that hi- erarchical 
BCIs can provide a flexible and robust way of controlling complex robotic devices in real- world environments. 

 
I. INTRODUCTION 

 
Brain-computer interfaces (BCIs) have received considerable attention in recent years due to their novel hands-free 
mode of interaction with the environment [Rao and Scherer, 2010; Scherer et al., 2008; Faller et al., 2010].  In 
particular, the field has seen rapid growth due to its potential for offering a new means of control for devices tailored to 
severely disabled and paralyzed people: examples include directing the motion of a motorized wheelchair, controlling a 
semiautonomous as- sistive robot, and using a neuroprosthesis [Gala´n et al., 2008; Bell et al., 2008; Mu¨ ller-Putz et 
al., 2005]. 
 
The most commonly used brain signal source for non- invasive BCIs in humans is the electroencephalogram (EEG). 
However, due to its non-stationarity, inherent variability, and low signal-to-noise ratio, a reliable translation of EEG 
into appropriate control messages for devices can be difficult and slow. Therefore, EEG signals have often been used to 
select a task that can be semi-autonomously performed by an applica- tion (e.g., control of a humanoid robot in [Bell et 
al., 2008]). Invasive BCIs, on the other hand, offer higher bandwidth and allow fine-grained control of robotic devices 
(e.g., [Velliste et al., 2008]), but moment-by-moment control over long periods of time can place a high cognitive load 
on the user. 
 
To overcome these problems, we propose an adaptive hi- erarchical architecture for brain-computer interfacing which 
allows the user to teach the system new and useful tasks on an ongoing basis: low-level actions are first learned and 
later semi-autonomously executed using a higher-level command (e.g., the command ”Go to kitchen“ for a semi-
autonomous mobile robot).  Such higher-level control frees the the user from having to engage in tedious moment-by-
moment con- trol once a command has been learned. 
 
In addition, we introduce, to our knowledge, the first use of uncertainty for guiding a BCI’s behavior during hierarchi- 
cal control.  We use Gaussian processes (GPs) for learning high-level commands and exploit the fact that they provide 
a measure of uncertainty in their output [Rasmussen, 2004]. When the uncertainty in a given region of task space is too 
high (e.g., due to lack of training in that part of the space), the BCI switches to user control for further guidance rather 
than continuing to execute the unreliable and potentially danger- ous high-level command.  Such uncertainty-guided 
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decision making is critical for real-world BCI applications, such as BCI-control of a robotic wheelchair or assistive 
robot, where user safety and the safety of those around the robot are of paramount importance. 
 
We present results from user studies involving four human subjects who successfully taught and controlled a humanoid 
assistive robot in a simulated home environment. We also re- port the first example of multi-tasking in a BCI, where a 
user was able to simultaneously control two different devices. Our results provide a proof-of-concept demonstration 
that hierar- chical BCIs may offer a scalable and robust approach to con- trolling complex robotic devices in real-world 
environments. 

 
Figure 1:  A Hierarchical BCI  System 

 
A. Experimental setup: User selects from a menu shown on a monitor while a view of the robot in its environment is 
shown in a larger immersive setting above, B. Simulated robot in its environ- ment:  The robot is a Fujitsu HOAP-2 
humanoid simulated using the Webots software, C. A screen shot of the menu and SSVEP stimulation, D. Frequency 
domain representation of a subject’s EEG signal illustrating a high SSVEP response to 15Hz stimulation. 

 
II. METHODS 

 
2.1   A Hierarchical Architecture for BCI 
The hierarchical BCI proposed in this paper is composed of three main components:  (A) an EEG-based BCI; we used a 
steady state visual evoked potential (SSVEP) based BCI [Mu¨ ller-Putz and Pfurtscheller, 2007], but other commonly 
used EEG responses such as P300 or mental imagery could also be used. We used SSVEPs because they offer 
relatively high information transfer rates (ITR) with minimal user train- ing: (B) a hierarchical menu and learning 
system that allows the user to teach the BCI new skills, and (C) the application, which, in the present case, is a 
simulation of a humanoid robot in a home environment that mimics the physics of the real world (Figure 1.A and 1.B). 
The three components interact closely to make the system work.  In particular, the hierar- chical adaptive menu system 
displays available commands as flashing stimuli for the user to choose using the SSVEP-based BCI. The user makes 
the desired selection by focusing on the desired command in the menu (Figure 1.C). The BCI detects the option the user 
is focusing on and sends its classification output to the hierarchical menu system, which in turn sends a command to the 
robot and switches to the next appropriate menu.  The robot executes the command it receives, which can be either a 
lower-level command such as turn left/right or a higher-level learned command. Finally, the user closes the control loop 
by observing the simulated robot’s action and making the next desired selection based on the updated menu. We 
describe each of the components of the hierarchical BCI system in more detail below. 
 
SSVEP-based BCI 
Flickering stimuli used to elicit SSVEPs were presented on a TFT computer screen with a refresh rate of 60 Hz.  Up to 
three different options (12 Hz, 15 Hz, and 20 Hz) could be presented to the user in any given menu. 
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Continuous EEG was recorded bipolarly from gold elec- trodes placed at electrode positions Oz and Cz (ground was 
linked to Cz), notch filtered at 60 Hz and digitized at 256 Hz (gUSBamp, Guger Technologies, Graz, Austria). 
 
To detect the flashing stimulus the user was focusing on, the power spectrum was estimated using the Fast Fourier 
Transform (FFT). FFT was applied to 1s segments of EEG data (Hamming window) every 0.5s and the power for each 
frequency was then calculated using squared values. The data used for final classification was a 4-second average of 
these power values (calculated from 8 FFT values). The frequency with the highest power among the three target 
frequencies of 12, 15, and 20Hz was classified as the user’s choice for that decision period (see Figure 1.D for an 
example). The BCI menu on the computer monitor and a video pro- jection of the robot simulator were placed one 
above the other (Figure 1.A). When users desired BCI control, they focused on the monitor, while at other times, they 
watched the robot move in its environment. When users were not focusing on the BCI menu, the power in the recorded 
EEG channel was markedly different, allowing a simple threshold-based detec- tor to self-initiate the SSVEP-BCI 
whenever the user required control. 
 
Hierarchical Adaptive Menu 
The hierarchical menu (Figure 2) is the interface the subject uses to interact with the hierarchical learning system. It 
dis- plays the available commands for the hierarchical learning system, which are selected using SSVEP. The top-level 
menu presents two options: ‘Train’ and ‘Test’.  
 
Selecting ‘Train’ allows the user to either teach the system a new task (‘new’ option) or update an existing one (‘exist- 
ing’ option). If ‘new’ is selected, the next menu presented is the robot navigation menu. If ‘existing’ is selected, the 
user must choose a task to update before the navigation menu is displayed (see Figure 2).  In navigating the robot, the 
user 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
has three choices: left, right, and a stop option indicating the user is done with the task.  To continue moving forward in 
the current direction, the user need not make a choice. When ‘stop’ is selected, a menu offers the user the option of sav- 
ing the task for inclusion in the training dataset for learning the corresponding high-level command (see below). In 
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order to mitigate the effects of erroneous classifications, the system includes various confirmation menus, giving users 
the ability to verify or correct their last choice. 
 
Selecting ‘Test’ allows the user to select a task that was previously learned by the system. After the user has demon- 
strated and saved examples of a task, the BCI learns the task (using a learning algorithm such as a Gaussian process 
(GP); see next section) and the system incorporates this task into the hierarchical menu as a new option in the ‘Test’ 
menu. The user can now simply select the task as a high-level command, and be at ease (or perform another BCI task) 
while the robot autonomously performs the task. 
 
For allowing the BCI to make decisions based on current uncertainty in the learned model, we included one additional 
menu. While robot is performing a selected high-level com- mand and enters a region where the output of the learned 
model has high uncertainty (e.g., high variance in the case of a GP), the BCI interrupts and displays a menu with two 
options: ‘guide’ and ‘exit’. The user can select the ‘guide’ command to guide the robot to the desired destination 
(thereby gener- ating more training data), or return to the top-level menu by selecting the ‘exit’ option. 
 
We also conducted a preliminary study with two new multi- tasking options added to the ‘Auto-Navigation’ menu (see 
Figure 2).  While robot is executing a high-level command, the user can choose one of these two multi-tasking options, 
currently mapped to turning an overhead light on/off on the right and left side respectively of the simulated home 
environ- ment. Note that these multi-tasking options could be mapped to any of a set of actions that could help the user 
achieve a de- sired goal faster. Such multi-tasking effectively expands the bandwidth of control through the use of a 
hierarchy. 
 
Robot Application 
Bell et al. demonstrated a BCI for high-level control of a Fu- jitsu HOAP-2 humanoid robot [Bell et al., 2008] but their 
work involved a fixed set of high-level commands. We used the Webots simulator [Cyberbotics Ltd., 2010] to simulate 
the HOAP-2 robot in a simple home environment. Note that rather than representing an animation of the robot, the We- 
bots software simulates the physical dynamics of the Fujitsu HOAP-2 robot as well as the environment; this facilitates 
the transition of the results to the real-world. 
 
The simulated robot was pre-programmed with a basic set of routines to walk forward, turn right, turn left, and make 
smooth transitions from one motion to another motion. The robot was also programmed with a simple collision 
avoidance behavior to keep the robot from walking into a wall or other obstacles during navigation.  Given these basic 
navigational routines, we developed a controller for robot navigation, with the user having a birds-eye view of the 
robot. The robot was always in motion unless stopped by the user or the collision avoidance behavior. 
 
The hierarchical BCI differs from traditional BCI systems in its ability to learn new behaviors from user 
demonstrations. Learning occurs in the robotic component of the BCI sys- tem, and is then abstracted into the 
hierarchical menu system. In the current implementation, we utilized a simple position- based approach to learning to 
navigate in the home environ- ment; other robotic devices such as prosthetics will require more sophisticated methods 
for learning new skills. 
 
In our experiments, we tested two learning algorithms: ra- dial basis function (RBF) networks [The MathWorks, Inc., 
2010] and Gaussian processes (GP) [Rasmussen, 2004]. Us- ing a simulated on-board GPS sensor, the robot’s position 
data was logged at a sampling rate of 0.5hz as the user guided the robot to a desired location. When the user 
subsequently commands the robot to learn the demonstrated navigation skill, this training data was used to learn 
mapping from posi- tion data to global navigation direction. The logged data and learned model are stored locally, and 
the user can update a selected skill with more demonstrations as needed, improv- ing performance over time.   This 
arrangement also allows training over multiple days.  We used off-the-shelf software packages for learning the RBF 
and GP models.  RBF mod- els were learned using the “newgrnn” function in Matlab’s Neural Networks Toolbox. For 
GPs, the GPML Matlab Code package [The Gaussian Processes Web Site, 2011] was used with isotropic squared 
exponential covariance function and Gaussian likelihood function with standard deviation of the noise hyperparameter 
set to 0.1. 
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During  execution  of  a  high-level command,  the  robot queries the BCI for navigation direction based on the current 
position.  If the GP model is used, one obtains both a pre- dicted mean value as well as the variance of the prediction. 
This variance can be related to the “confidence” of the BCI in the learned model: high variance implies low confidence 
in the predicted navigational command and vice versa. For the current implementation, we used a simple threshold to 
decide when the robot should ask the user for the guidance based on this confidence metric. 
 

III.  EXPERIMENTS AND RESULTS 
 
3.1   Study I: Testing the Hierarchical Architecture 
Four healthy, able-bodied individuals participated in the first set of experiments designed to test the hierarchical BCI 
ar- chitecture (all male, age ranging from 20-30).  None of the subjects had any prior experience with the hierarchical 
BCI system.  One subject had participated in SSVEP-based BCI experiments in the past. All subjects read and signed a 
con- sent form approved by UW Human Subjects Division. 
 
The first set of experiments used RBF networks for learn- ing.  First, preliminary trials consisting of only the SSVEP 
portion were run, lasting about 10 minutes; this was done to familiarize subjects with flashing stimuli, and to allow us 
to perform initial analysis to characterize each subject’s SSVEP response.  Subjects then used the entire system to 
navigate the robot from its initial position (lower-left corner) to an assigned goal position (lower-right corner) using 
low-level commands (left/right/stop). In the test phase, they were asked to reproduce the same task but using the high-
level command  

 
 
 
 
learned by the hierarchical learning system. This took about 20-30 minutes on average for the subjects.  We 
additionally conducted a more extensive experimental session with the best subject from our first set of experiments, 
where he was asked to perform the navigation task three times using low- level control and three times using the high-
level command. 
 
To compare performance of the hierarchical BCI to the low-level-only BCI, we employed three metrics (Table 1): 
cognitive load, measured by the number of commands the user had to issue to achieve a given task (‘Num Selections’ 
or number of selections); the time taken to complete the task (‘Task Time’); and the time spent only on controlling the 
robot (‘Nav Time’). 
 
3.2   Study I: Results 
All four subjects were able to use the hierarchical BCI to complete the assigned tasks.  The average SSVEP-based 3- 
class accuracy for the four subjects from the preliminary set of trials was 77.5% (standard deviation 13.8).  Although 
somewhat lower than other SSVEP rates reported in the litera- ture, we found that subjects exhibited higher SSVEP 
accuracy when using the entire system with closed-loop feedback. Re- sults obtained for the three different 
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performance metrics are shown in Table 1. In the table, we also include for comparison purposes the minimum values 
for these metrics, assuming a user with 100% SSVEP accuracy. 
 
The results indicate that for all three metrics,  subjects demonstrate improved performance using the hierarchical BCI: 
both the mean and variance for all three performance metrics are lower when using the hierarchical BCI com- pared to 
the low-level BCI. Results from the best perform- ing subject provide interesting insights regarding the use of high-
level commands in a hierarchical BCI. Due to the high SSVEP accuracy of this subject, the difference in the mean 
values between low-level and hierarchical modes of control was less, but the variance for low-level control was signifi- 
cantly greater than for higher-level control (Table 1). This is corroborated by the navigational traces in Figure 3, where 
we see that trajectories from the hierarchical BCI tend to follow the minimal path to the goal location based on the 
learned 

 
 
 

 
 
The dashed trajectories represent low-level navigational control by the user.   These trajectories were used to train an 
RBF neural network. The solid trajectories represent au- tonomous navigation by the robot using the learned RBF net- 
work after selection of the corresponding high-level com- mand by the user. The small arrows indicate the vector field 
learned by the RBF network (‘Learned Policy’) based on the user’s demonstrated trajectories. representation in the 
neural network. This result confirms the expectation that the network learns an interpolated trajectory that minimizes 
the variances inherent in the training trajecto- ries, with more training data leading to better performance. 
 
3.3   Study II: Uncertainty-Guided Actions andMulti-Tasking 
An important observation from Study I was that the learned high-level commands were not reliable in parts of the task 
space where there is insufficient training data.  Ideally, we would like the system to identify if it is able to safely 
execute the desired high-level command, preventing potentially catas- trophic accidents. We investigated such an 
approach in Study II by utilizing Gaussian processes (GP) for learning instead of RBF networks. 
 
The experiments were conducted with the subject that per- formed best in Study I. The navigation task was similar but 
used a room that was 2.25 times larger and had various ob- stacles.  The enlarged size and presence of non-wall shaped 
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obstacles increased the difficulty of robot navigation by re- quiring longer and more focused control.  The environment 
had two overhead lights on the right and left side of room that could be controlled in the multi-tasking task.  
Additionally, Study II also varied the starting position of the robot, making 

 
the learning problem more challenging. There were four days of experiments; two days of RBF runs on the new 
environment, and two days of GP runs on the new environment. On the first day for each type, the user was instructed 
to alternate runs of training and testing. In Figure 4, starting points S2, S4, S6 represent test starting locations, and S1, 
S3, S5 represent starting points of the robot in training mode.  The second day only involved test trials from each of the 
six starting locations based on the first day’s learned model. Additionally, for GP runs, to test the ability to multi- task, 
the user was instructed to turn on the lights on the side of the environment where the goal of the high-level command 
was located once the robot started autonomously navigating.  spent controlling the robot using low-level control versus 
high-level commands (‘Navigation time’), and number of se- lections the user had to make to achieve a given task 
(‘Num- ber of selections’).  To compare the performance of GP to RBF learning, we measured the success rate of the 
high-level commands, defined by number of times a high-level com- 
 
destination) divided by number of times a high-level com- mand was selected. Note that lack of success implies that the 
robot experienced a fall or another mode of failure. 
 
3.4   Study II: Results 
 
The user successfully performed the entire experiment as in- structed, managing a total of 24 runs over four days.   
As shown in Figure 5, the GP-based hierarchical BCI resorted to frequent user guidance on Day 1 (large amount of 
time and selections for low-level).  On Day 2, however, the user was able to invoke a learned high-level command, 
resulting in a larger number of selections and large amount of time for 
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Figure 5: Performance of the GP-based  Hierarchical BCI over 2 Days. 
 
Note the larger amount of time spent in the hierarchical mode and the greater number of high-level com- mands issued 
on day 2, indicating increased autonomy. This increased autonomy allows a greater degree of multi-tasking, as seen in 
the plot. 

 
As ex- pected, the GP-based hierarchical BCI has a much higher success rate due to its ability to recognize highly 
uncertain regions and obtain training data for these regions on an as needed basis. high-level commands. This allowed 
the user to multi-task and select the appropriate light to turn on, while the robot was autonomously navigating 
(“Multitasking”).  Figure 6 com- pares the success rate of high-level commands for GP ver- sus RBF-based hierarchical 
BCIs. As expected, the GP-based BCI exhibits a higher success rate for performing high-level commands due to its 
ability to switch to user-control in low- confidence areas. 
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IV. SUMMARY AND CONCLUSION 
 
BCIs for robotic control have in the past faced a trade-off be- tween cognitive load and flexibility. More robotic 
autonomy [Bell et al., 2008] implied coarse-grained control and less flexibility, while fine-grained control provided 
greater flexi- bility but higher cognitive load.  This paper proposes a new hierarchical architecture for BCIs that 
overcomes this trade- off by combining the advantages of these two approaches. 
 
Our results from two studies using EEG-based hierarchical BCIs demonstrate that (1) users can use the hierarchical 
BCI to train a robot in a simulated environment, allowing learned skills to be translated to high-level commands, (2) the 
prob- lem of day-to-day variability in BCI performance can be al- leviated by storing user-taught skills in a learned 
model for long-term use, allowing the learned skill to be selected as a high-level command and executed consistently 
from day to day, (3) a probabilistic model for learning (e.g., GPs) can be used to mediate the switch between high-level 
autonomous control and low-level user control, safeguarding against po- tentially catastrophic accidents, and (4) the 
hierarchical ar- chitecture allows the user to simultaneously control multiple devices, opening the door to multi-tasking 
BCIs. Our ongo- ing efforts are focused on testing the approach with a larger number of subjects and investigating its 
applicability to other challenging problems such as controlling a robotic arm with grasping capabilities. 
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