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Abstract: In the Round-Robin scheduling scheme, the scheduler processes each job, one after another, after giving a preset quantum of time. In 

the first-in first out (FIFO) scheduling, next process gets the opportunity only if the earlier arrived job is completely processed. This paper 

presents a general class of round-robin scheduling scheme in which both the above scheduling procedures are covered like particular cases. This 

class has many other scheduling schemes also. A Markov chain model is used to compare several scheduling schemes of the class. One 

scheduling scheme, which is a mixture of FIFO and round robin, is found efficient in terms of model based study approach. The system 

simulation procedure is used to derive the conclusion of the content. 
  

INTRODUCTION 

In an operating system, a large number of processes arrive to 

the scheduler whose role is to manage the processing of 

these jobs. There are many scheduling schemes available in 

literature [see Silberschatz and Galvin (2007), Stalling 

(2004), Tanenbaum and woodhull (2007)] like FIFO, Round 

robin, Priority based, Multi-level queue scheduling and so 

on. All these schemes have some advantages and 

disadvantages over each other. A unified study of 

scheduling scheme is required under a common environment 

of the system. This motivates to design unified a general 

class of scheduling schemes containing well known schemes 

so that its members may possess common properties of the 

class as well as could be mutually compared. With this 

thought of motivation, a general class of scheduling scheme 

is designed in this paper containing some well-known 

schemes like FIFO and Round robin as its member schemes.  

 

Shukla and Jain (2007) have studied the multi-level queue-

scheduling scheme in the environment of Markov chain 

model. Shukla et.al. (2007), studied the setup of space 

division switches in a Markov chain model scenario. Shukla 

and Jain (2007) used a Markov chain model for deadlock-

based study of multi-level queue scheduling. Some other 

contributions related to the use of Markov chain model are 

due to Medhi (1991) and Naldi (2002) and to round robin, 

queuing system are due to Schassberger (1981), Eiseriberg 

(1979), Liu and Towsley (1994), Chang (1994), Nelson and 

Towsley (1994), Shenker and Weinrib (1989), Nelson, 

Towsley and Tantawi (1988) and Horn (1974) . In present 

study, the designed general class of scheduling scheme is 

examined through a Markov chain model in order to 

perform comparative analysis of performance of member 

scheduling schemes.  

GENERAL CLASS OF ROUND-ROBIN QUEUE 

SCHEDULING SCHEME 

 

Consider a round-robin scheduling scheme shown in fig 2.1. 

A general class is laid down below:  

A) the S denotes scheduler and there are m processes P1, P2, 

P3,….. Pm in queue; 

B) the S provides one quantum of time to each process and 

next quantum is decided by a random trial; 

C) the S starts from any process Pi   in queue and then moves 

to Pj  ( )mij ...3,2,1=≠ ; 

D) The new process enters from the end i.e. Pm+1 is placed 

after Pm and so on;    

E) Suppose S is at any process Pi (i=1,2,3…m) at the end of 

a quantum, then in the next quantum 

(a) S will be on Pi+1 with priority p, or 

(b) S will be on Pi with priority s, or 

(c) S will be on Pi-1 with priority q. 

F) The S becomes idle when there is no process in the 

queue. However it is assumed that the scheduler S may be in 

deadlock state in any quantum; 

G) From this deadlock level, the S could be back also to the 

queue in any other quantum for processing purpose; 

H) There is a long waiting queue of processes P1’, P2’….. 

outside the processing unit and if one process is over inside, 

then a new process, waiting outside, enters inside so as to 

maintain the length of m processes there.  
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Figure.1 (Round Robin Processing) 

 

P3’ P2’P1’ 

MARKOV CHAIN MODEL 

Let 
( ){ }1, ≥nX
n

 denotes a Markov chain with the state 

space P1, P2, P3… Pm, and D where D is a deadlock state 

used to denote idle level, blocking or any disturbance caused 

in the system, during job processing. The 
( )n

X  is the state 

of scheduler of the system at the end of 
th

n  quantum 

(n=1,2,3…). Assume that m processes are in system at a 

time. Further, let the transition of scheduler S is random 

over m+1 states in 
th

n  quantum. The transition diagram for 

any three processes Pi-1, Pi, Pi+1 and D is given in fig. 3.1    

 

Figure.2 (System Diagram 

 

Define unit-step transition probabilities as 

P[X(n+1)=Pi+1 /X
(n)=Pi] = p  

P[X
(n+1)

=Pi /X
(n)

=Pi] = s 

P[X(n+1)=Pi-1 /X
(n)=Pi] = q 

P[X(n+1)=D /X
(n)=Pi] = r 

P[X
(n+1)

=Pi /X
(n)

=D] = 0 

The unit step transition probability matrix is: 

 
with p + q + r + s =1 and (m+1)r =1   

The initial probabilities, at n=0 for general class are :  

P[X
(0)

=Pi ] = pbi        (i=1,2,3,4…m) 

P[X
(0)

=D] = 0  

The state probabilities after the first quantum are: 

P[X
(1)

=Pi ] = P[X
(0)

=Pi-1 ]. P[X
(1)

=Pi / P[X
(0)

=Pi -1] +  

P[X
(0)

=Pi ]. P[X
(1)

=Pi / P[X
(0)

=Pi] +  

P[X(0)=Pi+1 ]. P[X(1)=Pi / P[X(0)=Pi +1] 

= (pbi-1)p + (pbi)s + (pbi+1)q       (if i-1=0 then i-1=1 & if 

i+1>m then i+1=m) 

P[X
(1)

=D] = r.�
=

m

i

ipb
1

= r 

Similarly, state probabilities after second quantum can be 

obtained by simple relationship: 

P[X(2)=Pi ] = [(pbi-2)p + (pbi-1)s + (pbi)q]p+ 

[(pbi-1)p + (pbi)s + (pbi+1)q]s+ 

[(pbi)p + (pbi+1)s + (pbi+2)q]q+ r.0                                              

= P[X(1)=Pi-1].p+ P[X(1)=Pi ].s+ P[X(1)=Pi+1].q 

P[X
(2)

=D] =
( )[ ] ( )[ ]1.. 1

1

1
DXPrPXP

m

i

i =+=�
=

                                               

In the similar way, state probabilities after third quantum 

are: 

P[X
(3)

=Pi ] = P[X
(2)

=Pi-1].p+ P[X
(2)

=Pi ].s+ P[X
(2)

=Pi+1].q 

P[X
3)

=D] =
( )[ ] ( )[ ]1.. 2

1

2 DXPrPXP
n

i

i =+=�
=

       

Remark 3.1 The generalized expressions for n quantum 

could be expressed like: 

P[X
(n)

=Pi ] = P[X
(n-1)

=Pi-1].p+ P[X
(n-1)

=Pi ].s+ P[X
(n-

1)
=Pi+1].q 

P[X
(n)

=D] =
( )[ ] ( )[ ]1.. 1

1

1
DXPrPXP

n
n

i

i

n
=+=

−

=

−

�  

 

SOME SPECIAL SCHEDULING SCHEMES 

By imposing restrictions and conditions over the ways and 

procedures, one can generate various scheduling schemes 

from the generalized class in section 2.0. 

SCHEME- III [A]:  WHEN Q = 0, R=0, P + S= 1  

Unit step transition probability matrix for 
( )n

X  under 

scheme-III [A] is 
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Remark .1 The initial probabilities at n=0 for scheme-III 

[A] are: 

 P[X
(0)

=Pi ]=pbi 

and subject to the condition �
=

m

i

ipb
1

 

Remark.2 The state probabilities after the first quantum are: 

P[X
(1)

=Pi ]=pbi-1.p + pbi.s          
Remark .3 The state probabilities after the second quantum 

are: 

P[X
(2)

=Pi ]=P[X
(1)

=Pi-1].p + P[X
(1)

=Pi].s   
Remark .4 The generalized expressions of scheme-III [A] 

for n quantum are: 

P[X
(n)

=Pi ]= P[X
(n-1)

=Pi-1].p + P[X
(n-1)

=Pi].s  

SCHEME- III [B]:  WHEN q = 0, p + r + s = 1  

Unit step transition probability matrix for 
( )n

X  under 

scheme-III [B] is 

           

 

Remark .1 The initial probabilities at n=0 for scheme-III 

[B] are  

P[X
(0)

=Pi ]=pbi (i=1,2,3…m)  

P[X(0)=R ]=0 

and subject to the condition �
=

m

i

ipb
1

 

Remark.2 The state probabilities after the first quantum are: 

P[X
(1)

=Pi ]= P[X
(0)

=Pi-1].p + P[X
(0)

=Pi].s  

P[X
(1)

=R ]= �
=

m

i

ipbr
1

. = r  

Remark.3 The state probabilities after the second quantum 

are: 

 P[X(2)=Pi ]=P[X(1)=Pi-1].p + P[X(1)=Pi].s 

P[X(2)=D ]= 
( )[ ]�

=

=
m

i

iPXP
1

1
      

Remark.4 The generalized expressions of scheme-III [B] 

for n quantum are: 

P[X
(n)

=Pi ]=P[X
(n-1)

=Pi-1].p + P[X
(n-1)

=Pi].s 

 P[X
(n)

=D ]= 
( )[ ]�

=

−
=

m

i

i

n
PXP

1

1
 

SIMULATION STUDY 

 

In order to compare all the four scheduling schemes with 

parts therein, under a common setup of Markov chain 

model, the following simulation study is performed: 

 

Under Scheme-III [A]: 

Consider initial probabilities pb1 =0.27, pb2 =0.15, pb3=0.17, 

pb4=0.18, pb5=0.23 and the transition probability matrix like 

below: 

{Here s=0.5, p=0.5, q=r=0 and p + s = 1} 

 

Table.1 
( )[ ]

)( AIIISCi

n
pXP

−
=  for transition probability matrices 

 Probabilities  Quantum 

1P  2P  3P  
4P  5P  

1=n  0.25 0.21 0.16 0.175 0.205 

2=n  0.2275 0.23 0.185 0.1675 0.19 

3=n  0.20875 0.22875 0.2075 0.17625 0.17885 

4=n  0.19375 0.21875 0.218125 0.191875 0.1775 

5=n  0.185625 0.20625 0.218438 0.205 0.184688 
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6=n  0.185156 0.195938 0.212344 0.211719 0.194844 

7=n  0.19 0.190547 0.204141 0.212031 0.203281 
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 Figure.3     Figure.4 

 

The scheme-III [A] shown in fig 5.5[A] and 5.5[B] is 

neither FIFO nor a round robin scheme. But it is a mixture 

of these two. In this, the quantum distribution takes over the 

same state or to the next state depending upon the outcome 

of the random experiment. If the number of quantum 

increases then this scheme shows almost a stable pattern of 

the state probabilities. This means every process has almost 

same chance of being processed.  

Under Scheme-III [B]: 
Initial probabilities are pb1 =0.27, pb2 =0.15, pb3=0.17, 

pb4=0.18, pb5=0.23, pbr=0 and the transition probability 

matrix like below: 

{Here q = 0, p + r +s = 1 and r = 0.166} 

                                           

 

 

Table.2  
( )[ ]

)(BIIISCi

n
pXP

−
=  for transition Probability Matrices 

Probabilities Quantum 

1P  2P  3P  
4P  5P  D  

1=n  0.20518 0.1851 0.13178 0.14512 0.16682 0.166 

2=n  0.15194 0.164413 0.136565 0.11436 0.128278 0.304444 

3=n  0.114887 0.130844 0.127819 0.106479 0.100025 0.419906 

4=n  0.088385 0.101159 0.108834 0.099473 0.086648 0.516202 

5=n  0.072844 0.077979 0.086696 0.087291 0.078677 0.596512 

6=n  0.063668 0.062467 0.067946 0.072503 0.069924 0.663491 

7=n  0.056227 0.052698 0.053928 0.058189 0.059606 0.719352 

 

 
Figure.5 and  Figure.6

 

When III [B] is taken into consideration, which is with 

deadlock chances also, we found that with the increasing 

number of attempts, the state probabilities are reducing and 

there is a high chances of system being transferred to 

deadlock state. Fig f.6[A] and 5.6[B] are in support of these 

facts. 
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CONCLUDING REMARK     

The present study incorporates a general class of scheduling 

schemes with FIFO and round robin as its members. Some 

other schemes are also member of this class and all these are 

considered with and without deadlock state. All the schemes 

are studied under a common Markov chain model. If the 

number of quantum increases then scheme-III[A] shows 

almost a stable pattern of state probabilities. The scheme-III 

seems a good choice because of stability pattern over job 

processing.      
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