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I. INTRODUCTION 

In the history of science, there is often a situation where a study of the likeness of a single crystal, which has fallen into 

a saturated solution, instantly causes a huge flow of work. This flow, spilling over, captures large areas. 

This was the case, for example, when the theory of automata developed rapidly. Approximately the situation in the first 

stage in the creation of programming languages and the theory of fuzzy sets looked like. To the American scientist B.B. 

Mandelbrot is due to the emergence of another analogous situation. 

The main idea of Mandelbrot is that natural objects of coarsened forms cannot be a kind of Euclidean forms, i.e. the 

dimensions of these objects are not integral, but fractional, and they were introduced by the fractal theory (from the lot 

Frangeze-break and fractus-fractional) [1]. Fractal object models [1] are built on the basis of various mathematical 

algorithms using modern computer graphics [2,3]. So, what is a fractal? A simple example of a natural fractal is a tree 

whose trunk is divided into two branches, which in turn branch into two smaller branches, etc. We can say that the tree 

branches follow fractal scaling, or the hypothesis itself is similar. In this case, each branch with its own branches is 

similar to the whole tree in a qualitative sense. Therefore, the type of the fractal structure of the object does not change 

significantly with scale transformations in a certain range.  

 

1.1 There is a Very Similarity of Space and Time 

We take a bounded region of the Euclidean plane. If it is crushed into a ball, then the resulting figure is not two-

dimensional, but there will not be a three-dimensional one. Because of its folds, the dimension will be greater than two, 

but less than three. Therefore they say, and it is mathematically proven that the resulting body has a fractional fractal 

dimension and the function describing its shape is not differentiable. Fractal dimension describes how an object fills its 

space. Our crumpled object does not completely fill the three-dimensional space, which has a topological dimension, or 

the dimension of the embedding. Therefore, the characteristic of a fractal object is the presence of its own dimension, 

which is not equal to the dimension of the embedding. Classical random distributions, in particular white noise, do not 

have this characteristic [4]. 

At present, there is clearly a lack of traditional physical models. In other words, a complete description of the processes 

of modern signal processing and fields is impossible with the help of formulas of classical mathematics obtained on the 

basis of representation of signals in the space of an integer measure and smooth functions. Today it is quite obvious 

that the application of the ideas of fractal theory and fractal synthesis in radio physics, radio engineering, radar, 

electronics and modern information technologies opens up great potential opportunities and new prospects in the 

processing of multidimensional signals in related scientific and technical fields.  

As is known, from the standpoint of system analysis, modern means and devices of radio engineering for the 

transmission and processing of signals in aggregate represent a large and complex system, i.e. consisting of a set of 

interconnected and interacting subsystems, each of which performs a certain function. Successful and reliable operation 
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of the whole system is due to the functioning of individual subsystems. When transmitting information (signal) through 

the atmosphere (air environment), the atmosphere is one of the subsystems of the communication channel. Unlike other 

subsystems, it has subsystems of natural origin and parameters that determine its functioning cannot be controlled.  

Propagation of a signal (electric waves) in a long subsystem can be investigated only with the help of mathematical 

modules of the subsystem. A huge number of publications of both theoretical and experimental research have been 

published on this issue. A lot of mathematical models are suggested, which are a consequence of Maxwell's equations, 

and they describe the processes of signal propagation (electromagnetic waves) in a subsystem to some extent 

satisfactorily. Since, a review of the research on this issue was not part of the task of our work; we found it 

inappropriate to cite a list of these publications.  

The purpose of this work is to construct a mathematical model for the propagation of plane electromagnetic waves 

(signals) in the tropospheric atmosphere of line of sight, taking into account the fractality of turbulence and 

interference. 

 

II. FRACTAL MODEL OF FLUCTUATIONS IN THE PERMITTIVITY OF THE TROPOSPHERIC 

ATMOSPHERE 

Usually, with the traditional approach, the solution of the problem of propagation of electromagnetic waves (signals) in 

a turbulent atmosphere is the permittivity of the medium - Ɛ(х,у,ƶ,t)- are assumed to be a random variable, a-scalar 

differential equation describing wave propagation by a random process. There is no systematic solution of the equation. 

In order to solve the problem, known laws for the distribution of the probabilities of a random variable and a random 

process (for example, the normal law of distribution of the Poisson distribution law, Rayleigh, etc.) are preliminarily 

assumed, then using numerical or simulation methods (the Monte Carlo method) evaluate the statistical characteristics 

of the wave field characteristics of the signal propagated). We will further consider the propagation of plane 

electromagnetic waves in a medium with weak fluctuations in the permittivity. We set Ɛ=< Ɛ >+  , where < Ɛ > - the 

averaged value of Ɛ and    = Ɛ- < Ɛ > is the fluctuating part. Obviously, by the definition of <Ɛ> = 0. The smallness of 

the fluctuations means that 0 <|    |> << <Ɛ>. This condition is satisfied with great accuracy in the troposphere, where 

<Ɛ> is of order 1, ω <|    |> ≈10-5 ÷ 10-6. The condition <|    |> << < Ɛ > can be violated in the ionosphere near the 

layer, where <Ɛ> vanishes, this case is not considered by us. We confine ourselves to the case < Ɛ > =const.  

In this case we consider simply < Ɛ > = 1. Assuming that Ɛ = 1 +    and assuming 0 <|    |> << 1. In this case,    

directly enter into the wave equation. By virtue of this, the random wave equation is transformed into a stochastic 

equation. We have already noted the shortcomings of the traditional methods of specifying    in determining the 

estimation of the stochastic characteristics of the wave field. More preferable for describing the fluctuations in the 

dielectric constant of the medium Ɛ is the use of the fractal concept of scale invariance or scaling. One example of a 

scale-invariant fractal curve is the Weierstrass-Mandelbrot fractal function. W (t) defined by the relation [5]. 
n
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Where, b> 1-parameter, 1 <D <2 - fractal dimension of the function (curve),    arbitrary phase. The cosine fractal 

Weierstrass-Mandelbrot function is the real part of the function W(t): 
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It is customary to assume that this function is fractal with dimension D. Modeling of fluctuations of the refractive index 

n of the troposphere by the Weierstrass function was considered in [6]. In the one-dimensional case, this model looks 

like this [6]: 
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Where,      
    -    -                             – coefficient of normalization; P1 – determines the ratio of 

fluctuations <  
 > and fluctuations <  

 > in an inertial dispersion; b>1 - b>1 – space-frequency scaling parameter; D – 

fractal dimension, applying a small value of 5/3 for one-dimensional fluctuations; N+1 – the number of scales, or 

intervals in logarithmic different;    – an arbitrary phase of the uniform distribution of the non-interval [0,2π]. In that 

work, a three-dimensional model of the coefficient of tropospheric application of the Weierstrass function is given. We 

used a fractal model of the per molecular permeability of the tropospheric atmosphere depending on two applications 

        The Weierstrass function of the following form is adopted: 
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Where, C is the standard deviation, b> 1 is the parameter of the space-frequency scaling, 2 <D <3 is the fractal 

dimension, К0 – wave number, N and M - the number of harmonics,     – arbitrary phase, t - time, z - spatial 

coordinate. Expression (3) completely describes the fluctuations in the permittivity of the tropospheric atmosphere.  

 

III. FRACTAL INTERFERENCE MODEL 
As is known in the propagation of radio waves under atmospheric conditions (in the troposphere in particular), they are 

prone to all kinds of extraneous interference. They are random variables or functions. Usually when analysing and 

synthesizing signals, interference is treated as white noise whose statistical characteristics are normally distributed. The 

traditional approach to the analysis of random signals is based on the spectral-correlation theory with the Wiener-

Khinchin fundamental theorem. However, if the random process is not Gaussian, then a complete statistical description 

of the signals requires evaluation of higher order moments with allowance for multipoint correlations, which does not 

always justify itself. An alternative approach is to estimate the fractal dimensions of various geometric objects 

associated with the process. An example of a random process possessing fractal properties is the classical Wiener 

process of Brownian motion. The trajectory of a Wiener process has the property of scale invariance, or scaling.  

We consider a Gaussian random process with independent step values {ξ}. The increment of the coordinate of the 

Brownian particle is determined by the expression for any pair of instants t and t0.   

X(t) – X(t0) ~ ξ |t-t0|
1/2

, t  t0 (4) 

 

From (4) we can determine the coordinate X (t) from the coordinate X(t0), choosing a random number ξ from the 

Gaussian distribution, multiplying it by the degree of increment of time |t-t0| and adding the result to a known 

coordinate X(t0). Thus expression (4) describes a classical Brownian motion, or a random function. 

On the basis of a Wiener Brownian process, Mandelbrot introduced the concept of a generalized Brownian motion [1] 

by replacing the exponent in the formula [4] by any real number in the interval 0<H<1. Happening H=1/2 corresponds 

to independent increments and describes the classical Brownian motion. The indicator H is called the Hurst exponent; 

information on it can be obtained, for example, from [5]. 

Usually, in the statistical analysis of signals with allowance for interference, it is believed that they are independent of 

spatial coordinates, and depends only on time, i.e. N(z,t)=N(t).  

In terms of physical content, this approach is justified in practice. Thus, interference in the tropospheric atmosphere is 

described by a function that depends on one variable of time t. To approximate the interference N (t) (random 

function). With the generalized Brownian motion   (t) we use the self-affinity of the fractal Brownian function. Self-

affine functions include the Weierstrass-Mandelbrot fractal function, which we considered earlier expression (1). Then, 

the hindrance can be approximated with the help of the following expression. 
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where   – standard deviation, b,S – parameters of space-frequency scaling, D fractal dimension, N + 1 - number of 

harmonics,    – phase, distribution randomly into segments [0,2π], t - time. 

 

3.1 Phase, Distribution, Randomly into Segments [0,2π], t - Time 

As we have already stated, we are considering the propagation of a plane wave. Let the plane electromagnetic wave U 

(z, t) propagate in the tropospheric atmosphere. In the process of propagation, it is subject to all kinds of random 

perturbations, which adversely affect the course of propagation. They can be reduced to the following basic types: 

fluctuations in the permittivity of the medium Ɛ (z, t) and noise (noise), they are shown in Figure 1. 

 
 

Figure 1: The tropospheric atmosphere subsystem with perturbations applied. 

 

U0(z,t) – falling predetermined plane electromagnetic wave; Ɛ (z, t) - fluctuations in the permittivity of the propagation 

medium; N (z, t) is noise (noise); U (z, t) is a plane electromagnetic wave at the point of reception; φ (∙) is the 

transformation operator. Let us assume that a flat monochromatic EMW (Electromagnetic wave) is incident on the 

tropospheric atmosphere, i.e. U0(z,t)=U_m cos⁡(ωt-K_0 z+φ_m). In the process of propagation through the 

troposphere, this EMW is subjected to perturbations Ɛ (z, t) and N (z, t), which are determined by relations (3) and (5), 

respectively. In this case, the process of propagation of a flat EMW in the troposphere can be described by the 

following wave equation. Mobile Ad Hoc Networks (MANETs) consists of a collection of mobile nodes which are not 

bounded in any infrastructure.  
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Where,   – the velocity of propagation of a plane wave in the troposphere. If we take into account   
 

√  
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      , then (6) can be rewritten in the form: 

   
2 2 2

1 02 2 2 2

1
z,t , ( , )( )

  
    

  

U U U
U t t N z t t

z c t t
 (7) 

 

In equation (7) 
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Then we finally have: 
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Where,   - circular frequency,   - wave number,    – phase, c - the speed of light. 

The initial and boundary conditions from the physical meaning of the problem are taken as follows: 
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Equations (8) can be solved by means of the Laplace transform with respect to the variable t for zero initial conditions. 

After the formation of (8) with respect to the variable t, we obtain a new equation. 

 

     
2 2

0 12 2

d U(z,p) p
U z,p U z,p  ε z,p N(z,p)

dz c
     (10) 

 

And boundary conditions: 

 0
U z,p 0    0 0

0

2

m m

m 2 2

P cosφ ωPsinφ
U 0,p U

P ω





 

dU(z,0)
0

dt
   

 2

0 1 0 1

1 2 2

P cos K z φ ωPsin(K z φ )
U z,p U

P ω

  



 (11) 

 

The Laplace transform of the terms on the right-hand side of equation (10) is equal to: 
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Here, to reduce the notation, we introduce the following notation: 
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Where the abbreviations are introduced: 
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The general solution of equation (10) consists of the sum of a homogeneous and inhomogeneous (particular solution) of 

an ordinary differential equation, i.e. 
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Using the boundary conditions, we define the unknowns    and  , then substituting them into (15) we find solutions of 

the problem in Laplace's inventions. Omitting the cumbersome calculations, we give the final solutions. 
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Expressions (19) after simplifications and transformations are expressed in terms of transfer functions along the 

channels of the incident wave, fluctuations in the permittivity of the troposphere and interference (Figure 2). 
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Figure 2: Structural diagram of the process of propagation of a plane electromagnetic wave in a fractal 

tropospheric atmosphere. 

 

U0(z,P) – incident plane wave; Ɛ1(z,t) – dielectric constant fluctuation; N(z,P) – interference in the tropospheric 

atmosphere.  
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The transfer functions (21), (22) and (23) of a completely sufficient power describe the process of propagation of plane 

electromagnetic waves (signals) in a fractal tropospheric medium. 

 

 

 

IV. CONCLUSION 
Expressions (21), (22) and (23) can be used to study and analyze the processes of propagation of fractal signals in the 

tropospheric atmosphere in line of sight. In statistical radio engineering, with optimal signal processing, the processed 

signal is treated as a mixture of useful signal and noise (noise). In relations (21) and (22), the transfer function (21) is 

the transmitted useful signal, and the transfer functions (22) and (23) are interference. Thus, at reception points 

(solution of the differential equation (20)), we fix a useful signal additive by fluctuations and noise, which can be 

subjected to further optimal processing by the next subsystem of the system. 
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The obtained expressions (21), (22) and (23) also make it possible to determine the spectral characteristics of the 

transmitted signal at the observation point if the spectral characteristics of the useful source of electromagnetic waves, 

the fluctuations in the permittivity of the medium and noise are known. 
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