
Volume 2, No. 7, July 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 67

A METRIC FRAMEWORK FOR ANALYSIS OF OOD

Suruchi Mehra*1 and Raman Maini2

*1Research Scholar, 2Associate Professor, University College of Engineering, Punjabi University

Patiala, Punjab, India – 147002

srchmehra@yahoo.co.in

research_raman@yahoo.com

 Abstract: Object oriented design is becoming more popular in software development environment and object oriented design metrics is an essential part of

software environment. This study focus on a set of object oriented metrics that can be used to measure the quality of an object oriented design. The metrics for

object oriented design focus on measurements that are applied to the class and design characteristics. These measurements permit designers to access the software

early in process, making changes that will reduce complexity and improve the continuing capability of the design. Several metrics and metric-tool are presented

and evaluated. An experimental study was conducted as an attempt to further validate each metric and increase knowledge about them. We present strategies on

how analysis of source code with metrics can be integrated in an ongoing software development project and how metrics can be used as a practical aid in code- and

architecture investigations on already developed systems. Metrics do have a practical use and that they to some extent can reflect software systems design quality,

such as: complexity of methods/classes, package structure design and the level of abstraction in a system.

Keywords: Object Oriented , Software Metrics ,Methods, Attributes, Cohesion, Coupling, Inheritance

INTRODUCTION

The use of object oriented software development techniques
introduces new elements to software complexity both in
software development process and in the final product. The
backbone of any software system is its design. Object-
oriented analysis and design are popular concepts in today’s
software development environment. They are often heralded
as the silver bullet for solving software problems [1][3]. The
concepts of software metrics are well established, and many
metrics relating to product quality have been developed and
used. The metrics were selected on the basis of their ability
to predict different aspects of object-oriented design (e.g. the
lines of code metric predict a modules size)[9][10]. Metrics
(quantitative estimates of product and project properties) can,
if defined from sound engineering principles, be a precious
tool for both project management and software development
[15] two of the pioneers in developing metrics for measuring
an object-oriented design were Shyam R. Chidamber and
Chris F. Kemerer. In 1991 they proposed a metric suite of six
different measurements that together could be used as a
design predictor for any object-oriented language. Their
original suite has been a subject of discussion for many years
and the authors themselves and other researchers has
continued to improve or add to the ―CK‖ metric suite. Other
language dependent metrics (in this report the Java language
is the only language considered) have been developed over
the past few years e.g. in ; they are products of different
programming principles that describes how to write well-
designed code[18][19]. One shouldn’t confuse metrics with
measures. A metric is a quantitative property of software
products (product metrics) or processes (process metrics)
whose values are numbers — either integer or real in our
current framework). A measure is the value of a metric for a
certain product or process [3][4]. Any metric should be
relevant related to some interesting property of the processes
or products being measured: cost, estimated number of bugs,
ease of maintenance [6][8] A metric theory is a set of metric
definitions accompanied with a set of convincing arguments
to show that the metrics are relevant., Our purpose is simply

to provide the basic tools that enable the development and
application of good metric theories.

PROBLEM FORMULATION

Many object-oriented metrics have been proposed
specifically for the purpose of assessing the design of a
software system. However, most of the existing approaches
to measuring these design metrics involve only some of the
aspects of object oriented paradigms As a result, it is not
always clear the design quality of code. We choose the
metrics so that every aspect can be covered. Instead, we
attempt to derive a set of indirect measures that lead to
metrics that provide an indication of the quality of some
representation of software [2]. In software, we need to
identify the necessary metrics that provide useful
information, otherwise the managers will be lost into so
many numbers and the purpose of metrics would be lost.
Hence, the objective of the study is to design a metric
framework using structural mechanisms of the object-
oriented paradigm as encapsulation, inheritance,
polymorphism, reusability, Data hiding and message-passing
that would be able to reflect the quality of a software system.

METHODOLOGY

This paper is trying to get the data set of required Object
Oriented metrics from the live projects of C++ from different
software development houses. After extracting the metrics
will find the correlation among the metrics and will get the
set of independent metrics. After finding and removing
different anomalies [17] of OO metrics. The resultant set is
not measuring the redundant metrics values of projects. By
the resultant set we will be able to check the quality of our
object oriented language code. We will try to suggest this
model set of object oriented metrics.

C.K. METRICS

Chidamber and Kemerer define the so called CK metric suite
this metric suite offers informative insight into whether
developers are following object oriented principles in their

Suruchi Mehra, Journal of Global Research in Computer Science Volume 2 No. (7), July 2011, 67-70

© JGRCS 2010, All Rights Reserved 68

design. They claim that using several of their metrics
collectively helps managers and designers to make better
design decision. CK metrics have generated a significant
amount of interest and are currently the most well known
suite of measurements for OO software. Chidamber and
Kemerer proposed six metrics; the following discussion
shows their metrics.

Weighted Method per Class (WMC)

It relates directly to the definition of complexity of an object.
The number of methods and the complexity of methods
involved are indicators of how much time and effort is
required to develop and maintain the object. The larger the
number of methods in an object, the greater the potential
impact on the children, since, children will inherit all the
methods in the object. A large number of methods can result
in a too application specific object, thus limiting the
possibility of reuse [17]. Since WMC can be described as an
extension of the CC metric (if CC is used to calculate WMC)
that applies to objects, its recommended threshold value can
be compared with the upper limit of the CC metric.

Depth of Inheritance Tree (DIT)

DIT metric is the length of the maximum path from the node
to the root of the tree. So this metric calculates how far down
a class is declared in the inheritance hierarchy. [17] If DIT
increases, it means that more methods are to be expected to
be inherited, which makes it more difficult to calculate a
class’s behavior. Thus it can be hard to understand a system
with many inheritance layers. On the other hand, a large DIT
value indicates that many methods might be reused.

Number of children (NOC)

This metric measures how many sub-classes are going to
inherit the methods of the parent class. If NOC grows it
means reuse increases. On the other hand, as NOC increases,
the amount of testing will also increase because more
children in a class indicate more responsibility. So, NOC
represents the effort required to test the class and reuse.

Coupling between objects (CBO)

The idea of this metrics is that an object is coupled to another
object if two object act upon each other. A class is coupled
with another if the methods of one class use the methods or
attributes of the other class. An increase of CBO indicates
the reusability of a class will decrease. Thus, the CBO values
for each class should be kept as low as possible [18] .CBO
metric measure the required effort to test the class.

Response for a Class (RFC)

RFC is the number of methods that can be invoked in
response to a message in a class. Pressman States, since RFC
increases, the effort required for testing also increases
because the test sequence grows. If RFC increases, the
overall design complexity of the
Class increases and becomes hard to understand. On the
other hand lower values indicate greater polymorphism. [17]

Lack of Cohesion in Methods (LCOM)

This metric uses the notion of degree of similarity of
methods. LCOM measures the amount of cohesiveness
present, how well a system has been designed and how
complex a class is. LCOM is a Count of the number of
method pairs whose similarity is zero, minus the count of
method pairs whose similarity is not zero.

RESULT

Here the values of metrics are calculated for the jlib
software using Columbus framework [16] [20]. After
calculating the values of C.K. metrics, relation between these
metrics is calculated using SPSS statistics. each and every
one of the metrics the minimum, maximum, mean, median
and standard deviation were calculated on every source code.
Parts of the results of the experimental study are presented in
table.
Descriptive Statistic of Jlib

Table 1: Statistics

NOC DIT CBO RFC WM

C

LCO

M

N 461 461 461 461 461 461

3862 3862 3862 3862 3862 3862

Mean .61 1.00 3.11 12.0

9

21.0

9

62.4

2

Median .00 1.00 2.00 6.00 6.00 5.00

Std. Deviation 3.84

2

1.14

4

3.88

9

16.5

67

42.9

66

303.

360

Minimum 0 0 0 0 0 0

Maximum 69 5 23 141 410 4892

Each metric was collected from different classes in the
system. Since all metrics Measure something related to
program code and its components, it’s likely to expect that
some correlation exists. Taking this statement into account
correlation between the metrics are calculated and a
significant value of these metrics is calculated.

Table 2: Correlations

NOC DIT CBO RFC WMC LCOM

NOC Pearson

Correlation

1 -.015 .037 .130** .074 .226**

Sig. (2-

tailed)

.744 .424 .005 .110 .000

N 461 461 461 461 461 461

DIT Pearson

Correlation

-.015 1 .618** .378** .216** .082

Sig. (2-

tailed)

.744

.000 .000 .000 .077

N 461 461 461 461 461 461

CBO Pearson

Correlation

.037 .618** 1 .778** .581** .361**

Sig. (2-

tailed)

.424 .000

.000 .000 .000

N 461 461 461 461 461 461

Suruchi Mehra, Journal of Global Research in Computer Science Volume 2 No. (7), July 2011, 67-70

© JGRCS 2010, All Rights Reserved 69

RFC Pearson

Correlation

.130** .378** .778** 1 .798** .691**

Sig. (2-

tailed)

.005 .000 .000

.000 .000

N 461 461 461 461 461 461

WMC Pearson

Correlation

.074 .216** .581** .798** 1 .641**

Sig. (2-

tailed)

.110 .000 .000 .000

.000

N 461 461 461 461 461 461

LCO

M

Pearson

Correlation

.226** .082 .361** .691** .641** 1

Sig. (2-

tailed)

.000 .077 .000 .000 .000

N 461 461 461 461 461 461

**. Correlation is significant at the 0.01 level (2-tailed).

Like NOC is significantly correlated with RFC and

LCOM.DIT is significant correlated with CBO,RFC and

WMC.Now Result of Jlib calculated with all metrics. We

will neglect the those metrics whose of sig. value greater

than .05.

Table 3: Coefficients

Model

Unstd.

Coefficients

Std.

Coefficients

t Sig.

Collinearity

Statistics

B

Std.

Error Beta

Toleran

ce VIF

1 (Consta

nt)

.647 .273

2.370 .018

LCOM -.005 .001 -.288 -5.245 .000 .415 2.407

WMC .120 .008 .949 15.675 .000 .341 2.934

RFC -.108 .029 -.330 -3.682 .000 .156 6.428

CBO .199 .099 .143 2.009 .045 .248 4.039

DIT -.286 .219 -.060 -1.305 .193 .583 1.717

NOC .046 .051 .033 .897 .370 .938 1.066

Result of Jlib with all metrics. We will neglect the NOC,

DIT and LOC because of sig. value greater than .05.VIF

value is in control.

Table 4: Coefficients

Model

Unstd

Coefficients

Std

Coff

t Sig.

Collinearity

Statistics

B

Std.

Error Beta

Tolera

nce VIF

1 (Consta

nt)

.647 .273

2.370 .018

LCOM -.005 .001 -.288 -5.245 .000 .415 2.407

WMC .120 .008 .949 15.675 .000 .341 2.934

RFC -.108 .029 -.330 -3.682 .000 .156 6.428

CBO .199 .099 .143 2.009 .045 .248 4.039

Now in this table we are having the metrics framework to

detect the quality of the code. VIF is less than 10 and sig

value is less than .05. This is a correct model

CONCLUSION

By analyzing metrics, a developer can correct those areas of

software process that are the cause of software defects.

Regarding the practical use of metrics to improve code

design the same conclusion can be drawn; it can improve the

design to some extent since the use of metrics can aid a

developer to easily spot simple design flaws .CK metrics

suite is a set of six metrics which capture different aspects of

an OO design; these metrics mainly focus on the class and

the class hierarchy. It includes complexity, coupling and

cohesion as well.. Many metrics have been adapted from CK

metrics suite. In this literature we discussed CK metrics

elaborately and we also analyzed some of the CK metrics. In

our analysis we found some result, These results suggest

that four of the six of CK’s metrics (WMC, RFC, LCOM

and CBO) are useful quality indicators for predicting fault-

prone classes.

ACKNOWLEDGMENT

I would like to thank my Research Guide Raman Maini,
Associate Professor, University College of Engineering,
Punjabi University Patiala for his valuable assistance, help
and guidance during the research process and thank to
Columbus framework contain a tool set which supports
metrics calculation and provides a common interface for
other reverse engineering tasks as well.

REFERENCES

[1] B. Henderson-sellers, Object-Oriented Metrics, Measures of

Complexity .Prentice Hall, 1996.

[2] F.B. Abreu and R. Carapuca, ‖Candidate Metrics for Object-

Oriented Software within a Taxonomy Framework,‖ System

and Software, vol. 26, no. l, pp. 87-96, Jan. 1994.

Suruchi Mehra, Journal of Global Research in Computer Science Volume 2 No. (7), July 2011, 67-70

© JGRCS 2010, All Rights Reserved 70

[3] L. Briand, S. Morasca, and V. Basili, De$ning and Vdidating

High- Level Design Metrics, Techtucal Report CS-TR-3301,

Univ. of Maryland, Dept. of Computer Science, College Park,

Md., 1994.

[4] L. Briand, S. Morasca, and V. Basili, ‖Property Based

Software

[5] Engineering Measurement,‖ IEEE Trans. Software Eng., vol.

22, no. 1, p. 68-86, Jan. 1996.

[6] L.Briand , W.Daly and J. Wust, Unified Framework for

Cohesion Measurement in Object-Oriented Systems. Empirical

Software Engineering, 3 65-117, 1998.

[7] L.Briand , W.Daly and J. Wust, A Unified Framework for

Coupling Measurement in Object-Oriented Systems. IEEE

Transactions on software Engineering, 25, 91 121,1999.

[8] L.Briand , W.Daly and J. Wust, Exploring the relationships

between design measures and software quality. Journal of

Systems and Software, 5 245-273, 2000.

[9] Lorenz, Mark & Kidd Jeff, Object-Oriented Software Metrics,

Prentice Hall, 1994.

[10] McCabe and Associates, Using McCabe QA 7.0, 1999, 9861

Broken Land Parkway 4th Floor Columbia, MD 21046.

[11] McCabe, T. J., ―A Complexity Measure‖, IEEE Transactions

on Software Engineering, SE-2(4), pages 308-320, December

1976.

[12] Moreau, D. R., ―A Programming Environment Evaluation

[13] Methodology for Object-Oriented Systems‖, Ph.D.

Dissertation,

[14] University of Southwestern Louisiana, 1987.

[15] Moreau, D. R., and Dominick, W. D., ―Object-Oriented

Graphical Information Systems: Research Plan and

Evaluation‖, Journal of Systems and Software, vol. 10, pp. 23-

28, 1989.

[16] Moreau, D. R., and Dominick, W. D., ―A Programming

Environment Evaluation Methodology for Object-Oriented

Systems: Part I – The Methodology‖, Journal of Object-

Oriented Programming, vol. 3, pp. 38-52, 1990.

[17] I.Brooks, ―Object-Oriented Metrics Collection and Evaluation

with a Software Process,‖ Proc. OOPSLA ’93 Workshop

Processes and Metrics for Object-Oriented Software

Development, Washington, D.C., 1993.

[18] R.Harrison, S.J.Counsell, and R.V.Nithi, An Evaluation of

MOOD set of ObjectOriented Software Metrics. IEEE Trans.

Software Engineering, vol.SE-24, no.6, pp. 491-496 June1998.

[19] Siket, I., Ferenc, R.: Calculating Metrics from Large C++

Programs

[20] S.R. Chidamber and C.F. Kemerer, ―A Metrics Suite for

Object- Oriented Design,‖ IEEE Trans. Software Eng., vol. 20,

no. 6, pp. 476493, June 1994.

[21] S.R. Chidamber and C.F. Kemerer, ‖Authors Reply,‖ lEEE

Trans. Software Eng., vol. 21, no. 3, p. 265, Mar. 1995.

[22] S.R.Chidamber and C.F.Kamerer, A metrics Suite for Object-

Oriented Design. IEEE Trans. Software Engineering, vol. SE-

20, no.6, 476-493, 1994.

[23] Z. Balanyi and R. Ferenc. Mining Design Patterns from C++

[24] Source Code. In Proceedings of the 19th International

Conference on Software Maintenance (ICSM 2003), pages

305–314. IEEE Computer Society, Sept. 2003.

SHORT BIODATA OF THE AUTHOR

Raman Maini received B.Tech (Computer Science &

Engineering) from Beant College of Engineering, Gurdaspur,

Punjab, India in 1999 and M.Tech(Computer Science &

Engineering) from PAU, Ludhiana, India, in 2002. He got

Merit certificate in his M.Tech thesis at PAU. He is currently

working as an Assistant Professor in Computer Engineering at

University College of Engineering, Punjabi University,

Patiala, India. He is a life member of ISTE (Indian Society of

Technical Education), India and IETE (Institution of

Electronics & Telecommunication Engineers), India. His

current area of research is Computer Vision (Specialty Noise

Reduction in Medical Images, Edge Detection and Image

Enhancement).

Suruchi Mehra received B.Tech(Computer Science &

Engineering) from RIMT-IET , Mandigobindgarh, Punjab,

India in 2009 and pursuing M.Tech(Computer Science &

Engineering(2009-2011) from Punjabi university, Patiala,

India.

