

Volume 2, No. 4, April 2011 Journal of Global Research in Computer Science

ISSN-2229-371X

RESEARCH PAPER

Available Online at www.jgrcs.info

A Modern Advanced Hill Cipher Involving XOR Operation and a Permuted Key

V.U.K.Sastry¹, Aruna Varanasi^{*2} and S.Udaya Kumar³

 ¹Department of computer Science and Engineering,SNIST Hyderabad, India, vuksastry@rediffmail.com
 *²Department of computer Science and Engineering,SNIST Hyderabad, India, varanasi.aruna2002@gmail.com
 ³Department of computer Science and Engineering,SNIST Hyderabad, India, uksusarla@rediffmail.com

Abstract: In this paper, we have developed a block cipher by extending the analysis of the advanced Hill cipher. In this, besides the usual involutory matrix, which contains the key, we have included another matrix, which is obtained by permuting the original involutory matrix. This analysis is strengthened by using the xor operation, modular arithmetic and a function called mix(), which mixes the binary bits of the plaintext and the involutory matrix, which includes the key. The avalanche effect and the cryptanalysis carried out in this investigation clearly indicate that the strength of the cipher is quite significant. *Keywords:* symmetric block cipher, cryptanalysis, avalanche effect, ciphertext, key, permuted key, xor operation.

INTRODUCTION

In a recent investigation [1], we have developed a block cipher, called modern advanced Hill cipher, by modifying the advanced Hill cipher [2]. In this we have included a matrix A_0 , which is obtained by permuting an involutory matrix A, which contains the key K. In this process, the basic relations governing the cipher are

 $C = (AP + A_0) \mod N,$ (1.1) and $P = (A (C-A_0)) \mod N,$ (1.2)

where P is a plaintext matrix, N a positive integer, chosen appropriately, and C is the corresponding ciphertext matrix. In this analysis, we have shown that the addition of A_0 plays a vital role in strengthening the cipher.

In the present paper our objective is to modify the modern advanced Hill cipher by replacing the addition operation with XOR operation. Our interest here is to show that the xor operation is quite comparable to the addition operation in strengthening the cipher.

The relations governing the block cipher under consideration are

$$C = (AP) \mod N \oplus A_0, \quad (1.3)$$

and
$$P = (A(C \oplus A_0)) \mod N. \quad (1.4)$$

In this analysis also we have introduced the iteration process, and the mix() function in each round of the iteration. The departure between the previous paper and the present one is the addition (+) in the previous paper is replaced by the xor in the present one. These two operations are expected to be of equal importance.

Let us now mention the plan of the paper. In section 2, we have introduced the development of the cipher and presented the algorithms for encryption and decryption. In section 3, we have illustrated the cipher and mentioned the avalanche effect. Section 4 is devoted to cryptanalysis. Finally in section 5, we have discussed the computations and drawn conclusions.

DEVELOPMENT OF THE CIPHER

In the development of the cipher, the plaintext P, the key K (basing upon which the involutory matrix A is found) and the ciphertext C are of the form

$\mathbf{P} = [\mathbf{P}_{ij}],$	i=1 to n, $j=1$ to n,	(2.1)	
$\mathbf{K} = [\mathbf{K}_{ij}],$	i=1 to n/2, j=1 to n/2,	(2.2)	
$\mathbf{C} = [\mathbf{C}_{ij}],$	i=1 to n, j=1 to n.		(2.3)

Here n is an even positive integer and each element of P, K and C are decimal numbers, lying between 0 and 255, as we have made use of EBCDIC code.

On using the key K, the involutory matrix A can readily be obtained by applying the following relations:

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix}$$
(2.4)

$$A_{11} = K,$$
 (2.5)

$$A_{22} = -K,$$
(2.0)
$$A_{12} = [d(I-K)] \mod N,$$
(2.7)

$$\begin{array}{ll} A_{21} = [\lambda (I + K)] \mbox{ mod } N, & (2.8) \\ (d\lambda) \mbox{ mod } N = 1, & (2.9) \end{array}$$

where N=256.

In order to have a detailed discussion for obtaining A, we refer to [3].

The A_0 , which is obtained by permuting the terms in A can be written in the form

$$A_{0} = \begin{bmatrix} A_{22} & A_{21} \\ A_{12} & A_{11} \end{bmatrix}.$$
 (2.10)

As we have already pointed out in section 1, the relations governing the encryption and the decryption are

$$\mathbf{C} = (\mathbf{AP}) \mod \mathbf{N} \oplus \mathbf{A}_0, \tag{2.11}$$

and

$$P = (A(C \oplus A_0)) \mod N.$$
 (2.12)

The algorithms for encryption and decryption are given below.

Algorithm for Encryption

- 1. Read n,P,K,r,d
- 2. A₁₁=K
- 3. $A = involute(A_{11},d)$
- 4. $A_0 = permute(A)$

5. for i = 1 to r

$$\begin{cases}
P = (A P) \mod 256 \oplus A_0 \\
P = \min(P) \\
\\
C = P
\end{cases}$$
6. Write(C)

Algorithm for Decryption

1. Read n,C,K,r,d

- 2. $A_{11} = K$
- 3. $A = involute(A_{11}, d)$
- 4. $A_0 = permute(A)$
- 5. for i = 1 to r

{

$$C = Imix(C)$$

C= (A (C \oplus A₀)) mod 256

P = C4. Write (P)

Algorithm for inverse(K)

1. Read A, n, N

// A is an n x n matrix. N is a positive integer with which modular arithmetic is carried out. Here N= 256.

© JGRCS 2010, All Rights Reserved

- 2. Find the determinant of A. Let it be denoted by Δ , where $\Delta \neq 0$.
- 3. Find the inverse of A. The inverse is given by $[A_{ji}]/\Delta$, i= 1 to n , j = 1 to n

// $[A_{ij}]$ are the cofactors of a_{ij} , where a_{ij} are the elements of A

for i = 1 to N
{
//
$$\Delta$$
 is relatively prime to N
if((i Δ) mod N == 1) break;
}
d= i;
B = [dA_{ii}] mod N. // B is

 $B = [dA_{ji}] \mbox{ mod } N. \ensuremath{{//}} B$ is the modular arithmetic inverse of A.

In this analysis, we have taken r=16. The function mix() can be written in the form P=mix(P). For a detailed discussion of the functions mix() (that is how the binary bits are mixed) and involute() (used for obtaining the involutory matrix, A), we refer to [2]. The function Imix(), used in decryption, denotes the reverse process of mix().

ILLUSTRATION OF THE CIPHER

Consider the plaintext given below:

"As we came across, unfortunately, all selfish and greedy people, we are residing in wilderness in the forests. But we are having several scientists and engineers among us. We must be able to light our own lamp so that we drive away the gloom in our life, and fight a battle with the society." (3.1)

Let us focus our attention on the first sixty four characters of the plaintext given by (3.1). Thus we have "As we came across, unfortunately, all selfish and greedy people," (3.2)

On adopting the EBCDIC code, (3.2) can be written in the form

193	162	64	166	133	64	131	129	
148	133	64	129	131	153	150	162	
162	107	64	164	149	134	150	153	
163	164	149	129	163	133	147	168	(3.3)
107	64	129	147	147	64	162	133	
147	134	137	162	136	64	129	149	
132	64	135	153	133	133	132	168	
64	151	133	150	151	147	133	107	
	193 148 162 163 107 147 132 64	193 162 148 133 162 107 163 164 107 64 147 134 132 64 64 151	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	193 162 64 166 133 148 133 64 129 131 162 107 64 164 149 163 164 149 129 163 107 64 129 147 147 147 134 137 162 136 132 64 151 133 150 151	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	193 162 64 166 133 64 131 148 133 64 129 131 153 150 162 107 64 164 149 134 150 163 164 149 129 163 133 147 107 64 129 147 147 64 162 147 134 137 162 136 64 129 132 64 155 153 133 132 64 151 133 150 64 151 133 150 151 147 133	193 162 64 166 133 64 131 129 148 133 64 129 131 153 150 162 162 107 64 164 149 134 150 153 163 164 149 129 163 133 147 168 107 64 129 147 147 64 162 133 147 134 137 162 136 64 129 149 132 64 135 153 133 133 132 168 64 151 133 150 151 147 133 107

Let us choose the key K in the form

$$\mathbf{K} = \begin{bmatrix} 215 & 111 & 19 & 147\\ 223 & 99 & 254 & 12\\ 56 & 1 & 127 & 174\\ 59 & 146 & 189 & 81 \end{bmatrix}$$
(3.4)

Let us now construct the involutory matrix A by using the relations (2.4) to (2.9). Here we take d= 99. Thus we have

	215	111	19	147	62	19	167	39	
	223	99	254	12	195	26	198	92	
	56	1	127	174	88	157	70	182	(2.5)
A=	59	146	189	81	47	138	233	16	(3.5)
	72	133	145	17	41	145	237	109	
	85	76	106	132	33	157	2	244	
	104	75	128	250	200	255	129	82	
	73	198	95	6	197	110	67	175	

On using (2.10) and (3.5), we get

$$A_{0} = \begin{bmatrix} 41 & 145 & 237 & 109 & 72 & 133 & 145 & 17 \\ 33 & 157 & 2 & 244 & 85 & 76 & 106 & 132 \\ 200 & 255 & 129 & 82 & 104 & 75 & 128 & 250 \\ 197 & 110 & 67 & 175 & 73 & 198 & 95 & 6 \\ 62 & 19 & 167 & 39 & 215 & 111 & 19 & 147 \\ 195 & 26 & 198 & 92 & 223 & 99 & 254 & 12 \\ 88 & 157 & 70 & 182 & 56 & 1 & 127 & 174 \\ 47 & 138 & 233 & 16 & 59 & 146 & 189 & 81 \end{bmatrix}$$
(3.6)

On using (3.3), (3.5), and (3.6), and the encryption algorithm, we get

$$\mathbf{C} = \begin{bmatrix} 150 & 239 & 213 & 252 & 227 & 178 & 205 & 47 \\ 83 & 83 & 147 & 31 & 197 & 185 & 96 & 83 \\ 39 & 255 & 79 & 1 & 4 & 187 & 143 & 244 \\ 50 & 183 & 44 & 114 & 6 & 72 & 191 & 58 \\ 100 & 120 & 118 & 203 & 198 & 213 & 120 & 11 \\ 42 & 248 & 76 & 57 & 164 & 218 & 91 & 92 \\ 157 & 73 & 228 & 60 & 176 & 182 & 231 & 43 \\ 119 & 14 & 229 & 19 & 199 & 52 & 86 & 235 \end{bmatrix}$$
(3.7)

On adopting the decryption algorithm, with the required inputs, we get back the original plaintext given by (3.3).

Let us now study the avalanche effect, which tells us about the strength of the cipher.

To achieve this one, we replace the thirteenth character 'c' by 'b' in the plaintext (3.2). The EBCDIC codes of 'b' and 'c' are 130 and 131, which differ by one bit in their binary form. Now, on using the modified plaintext along with (3.5) and (3.6) and applying the encryption algorithm, we have the ciphertext C in the form

	71	245	119	211	223	154	227	50	
	198	229	53	64	159	85	8	200	
	226	137	17	175	240	181	40	96	
C =	147	117	29	111	231	64	189	212	(3.8)
	139	112	81	62	214	226	102	128	, í
	139	18	131	151	33	162	165	144	
	67	9	166	158	228	174	210	192	
	172	211	14	150	145	152	184	142	

On comparing (3.7) and (3.8), in their binary form, we notice that the two ciphertexts differ by 260 bits (out of 512 bits). This indicates that the strength of the cipher is very good.

Let us now change the first row first column element of the key K, given by (3.3), from 215 to 214. This will lead to a change of one bit in their binary form. After obtaining the modified A and the A_0 corresponding to the modified key, we apply the encryption algorithm (by taking the original plaintext), and obtain the corresponding ciphertext C. Thus we get

C\=	82 135 92 117 9 220	31 186 66 222 3 129	150 182 111 32 146 241	136 197 242 217 73 186	158 53 247 236 55 175 226	252 31 182 235 207 240 72	27 110 110 71 180 27	182 112 189 63 226 160	(3.9)
	220 61 62	129 143 221	241 67 190	186 26 217	175 226 186	240 73 240	27 104 129	160 149 215_	

Now on comparing (3.7) and (3.9) in their binary form, we find that they differ by 269 bits (out of 512 bits). This also exhibits the strength of the cipher.

Though the avalanche effect is indicating the strength of the cipher, let us now consider the cryptanalysis which establishes very firmly the strength of the cipher.

CRYPTANALYSIS

The cryptanalytic attacks which are generally considered in the literature of Cryptography are

- Ciphertext only attack (Brute force attack), 2) Known plaintext attack,
- 3) Chosen plaintext attack, and4) Chosen ciphertext attack.

The key matrix K, given by (3.3), contains 16 decimal numbers. In this analysis, we have taken an integer d in the construction of the involutory matrix, A. As this also is to be treated as an additional key, the total length of the key can be considered as 17 decimal numbers, which is equal to 136 binary bits. Thus the size of the key space is

$$2^{136} = (2^{10})^{13.6} \approx (10^3)^{13.6} = 10^{40.8}$$

If we assume that the time required for computation with each one of the keys is 10^{-7} seconds, then the time required for carrying out the computation with all keys in the key space is

$$\frac{10^{40.8} \times 10^{-7}}{365 \times 24 \times 60 \times 60} = 3.171 \times 10^{25.8}$$
 years

As this is very large, we conclude that this cipher cannot be broken by the brute force attack.

Let us now examine the known plaintext attack. In this we know pairs of the plaintext and the ciphertext as many as we require. In the development of this cipher we have an iterative process and mix function. Denoting the mix function as M, for clarity and convenience, the relation between the ciphertext and the original plaintext, obtained at the end of the iteration process (for r=16), can be written in the form

 $\begin{array}{l} C=M((AM((\dots M((AP) \mod 256 \oplus A_0)) \mod 256 \oplus A_0)) \mod 256 \oplus A_0) \\ A_0 \) \ \dots \dots) \mod 256 \oplus A_0) \) \mod 256 \oplus A_0) \ . \\ (4.1) \end{array}$

On focusing our attention on the equation (4.1), we notice several interesting factors. After multiplying A and P we have carried out mod 256. Then the elements of A_0 are xored with the result of (AP) mod 256. After this, the resulting value is converted into binary bits and then the mix process is carried out. In the light of all these operations, the binary bits of the key (included in A) and the plaintext P are totally mixed and they have undergone diffusion. As this process continues in each round, we do not have any scope for the determination of the key or a function of the key so that we can break the cipher. Thus the cipher cannot be broken by the known plaintext attack. Generally every encryption algorithm is designed to withstand against the first two attacks. The latter two cryptanalytic attacks depend totally on intuition and imagination. Here we do not find any such scope for breaking the cipher.

COMPUTATIONS AND CONCLUSIONS

In this paper, we have developed a block cipher, called modern advanced Hill cipher, in which we have included a matrix A_0 (obtained by permuting the involuntary matrix A, which includes the key K) and the xor operation. In this cipher the computations are carried out by writing programs for encryption and decryption in Java.

The plaintext (3.1) is divided into five blocks by taking 64 characters at a time. Each block is written in the form of a square matrix of size 8. The last block is supplemented with twenty nine characters, so that it becomes a complete one. The ciphertext corresponding to the complete plaintext (3.1) is obtained in the form

150 83 39 50 100 42 157 119	239 83 255 183 120 248 73 14	213 147 79 44 118 76 228 229	252 31 114 203 57 60 19	227 197 4 198 164 176 199	178 185 187 72 213 218 182 52	205 96 143 191 120 91 231 86	47 83 244 58 11 92 43 235
103 61 193 155 107 211 112 84 222 162 154 188 112 94 186 219 87 206 96 26 208 32 21 8 161 69 13 246 188	94 18 75 22 77 93 43 57 129 53 146 134 14 84 226 221 124 139 242 91 77 80 125 8 149 121 143 125 125 129 129 129 129 129 129 129 129	22 223 217 70 132 217 195 203 87 171 42 216 255 25 68 40 42 136 247 7 81 206 104 201 109 45 46 7 22	211 93 22 47 11 77 218 249 127 1 203 246 150 174 228 195 115 116 184 196 105 135 67 248 219 83 10 42	199 42 124 197 130 123 167 31 156 42 79 96 133 139 32 115 79 158 35 80 140 107 94 16 149 64 238 89 27	192 248 120 250 254 35 32 3 28 114 44 248 229 2 132 27 35 29 56 228 147 231 183 19 226 192	53 24 105 177 148 255 217 75 3 212 174 190 15 11 72 41 213 62 50 210 107 48 123 84 11 25 135 238	120 29 8 221 237 128 23 5 168 55 151 181 82 1 174 130 195 134 232 121 181 55 121 179 203 104 199 3
63 80	226 42	215 180	96 2	165 156	186 38	23 191	255 84
211	211	33	31	191	237	155	1

The avalanche effect and the cryptanalysis, considered in sections 3 and 4, clearly indicate that the cipher is a strong one and it cannot be broken by any cryptanalytic attack. This generalization of the advanced Hill cipher is markedly an interesting one.

REFERENCES

- [1] V.U.K.Sastry, Aruna Varanasi, and S.Udaya Kumar, " A modern Advanced Hill cipher Involving a Permuted Key and Modular Arithmetic Addition Operation", sent for publication in Journal of Global Research in Computer science.
- [2] Bibhudendra Acharya. Saroj Kumar Panigrahy, Sarat Kumar Patra, and Ganapathi Panda, "Image Encryption Using Advanced Hill Cipher Algorithm", International Journal of Recent Trends in Engineering, Vol.1, No.1, May2009.
- [3] V.U.K.Sastry, Aruna Varanasi, S.Udaya Kumar, "Advanced Hill Cipher Involving Permutation and Iteration", International Journal of Advanced Research in

Computer Science, Vol.1, No.4, pp. 141-145, Nov-Dec.

2010.

Dr. V. U. K. Sastry is presently working as Professor in the Dept. of Computer Science and Engineering (CSE), Director (SCSI), Dean (R & D), SreeNidhi Institute of Science and Technology (SNIST), Hyderabad, India. He was Formerly Professor in IIT, Kharagpur, India and worked in IIT, Kharagpur during 1963 – 1998. He guided 12 PhDs, and published more than 40 research papers in various international journals. His research interests are Network Security & Cryptography, Image Processing, Data Mining and Genetic Algorithms.

Aruna Varanasi is presently working as Associate Professor in the Department of Computer Science

and Engineering (CSE), Sreenidhi Institute of Science and Technology (SNIST), Hyderabad, India. She was awarded "Suman Sharma" by Institute of Engineers (India), Calcutta for securing highest marks among women in India in AMIE course.