
Volume 3, No. 4, April 2012

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 11

A NEW DATA HIDING ALGORITHM WITH ENCRYPTED SECRET MESSAGE

USING TTJSA SYMMETRIC KEY CRYPTO SYSTEM

Sayak Guha
1
, Tamodeep Das

2
, Saima Ghosh

3
, Joyshree Nath

4
, Sankar Das

5
and Asoke Nath

6

1,2,5,6Department of Computer Science,St. Xavier‟s College(Autonomous), Kolkata,India
3Cognizant Technology Solutions, Kolkata, India

4A.K.Chaudhuri School of IT,Raja Bazar Science College,Calcutta University
1sayak0290@gmail.com, 2tamodeep1@yahoo.co.in 3saima.ghosh@gmail.com, 4joyshreenath@gmail.com,

5dassankar16@yahoo.co.in, 6asokejoy@gmail.com

Abstract: In the present work we are proposing a new steganogarphy method to hide any encrypted secret message inside a cover file by

substituting in the LSB. For encrypting secret message we have used new algorithm namely TTJSA developed by Nath et al [10]. For hiding
secret message we have used a method proposed by Nath et al [2]. The TTJSA method comprises of 3 distinct methods which are also developed
by Nath et al[1,7]. The methods are MSA[Meheboob, Saima and Asoke][1], NJJSAA[Neeraj, Joel, Joyshree, Amlan, Asoke][7] and Generalised
Modified Vernam Cipher method developed by Nath et al[10]. The authors have used TTJSA method for encryption purpose as it is already
proved that TTJSA is very effective even if we have small pattern such as digital watermark or password etc. Moreover the cryptanalysis of
TTJSA shows that the standard attack like differential attack or simple plain text attack will not be able to break the encryption method. So the
main advantage of this method is that even if the hacker can extract the embedded data from a host file but they can not get back the original

secret message. While embedding encrypted secret message we have used the standard LSB substitution method [2]. The present method may be
used for hiding very confidential message or password or any private key from one machine to another machine or from one machine to server
etc. For sending question papers normally the teachers are sending it through e-mail as normal plain text. Instead of that now they can encrypt it
first using TTJSA method and hide the encrypted message in some popular image and send it to destination with full confidence like in between
no one will be able to hack it. In defense or in Banking sector also the present method may be used for sending some crucial and important
message. The present method may be used to hide any confidential message such as text, audio, image in any image or audio or video file.

Keywords: MSA,TTJSA,NJJSAA,LSB,Vernam,Steganography

INTRODUCTION

In the present work we have used two(2) distinct algorithms

(i) to encrypt secret message(SM) using

TTJSA(Trisha,Tamodeep,Joyshree,Shayan,Asoke) proposed

by Nath et al.[10]. (ii) We insert the encrypted secret

message inside the standard cover file(CF) by changing the

Least Significant Bit(LSB). Nath et al[2] already proposed
different methods for embedding SM into CF but there the

SF was inserted as it is in the CF and hence the security of

steganography was not very high. In the present work we

have basically tried to make the steganography method more

secured. One can extract SM from CF but it can not be

decrypted as one has to execute the exact decryption

method. In our present work we try to embed almost any

type of file inside some standard cover file(CF) such as

image file(.BMP or .JPEG) or any image file inside another

image file. Here first we will describe our steganography

method for embedding any type of file inside any type of

file and then we will describe the encryption method which
we have used to encrypt the secret message and to decrypt

the extracted data from the embedded cover file.

a. LSB insertion method: Here we substitute the bits of

the secret message into LSB position of every byte of

the cover file. Now we choose some bit pattern where

we want to embed some secret text:

11000100 00001100 11010010 10101101

00101101 00011100 11011100 10100110

Suppose we want to embed a number 224 in the above bit

pattern. Now the binary representation of 224 is 11100000.

To embed this information we need at least 8 bytes in
cover file. Here we have taken 8 bytes in the cover file.

Now we modify LSB of each byte of the cover file by each

of the bit of secret text 11100000. Now we want to show
what happens to cover file text after we embed

11100000 in the LSB of all 8 bytes:

Table 1 Changing LSB

Before

Replacement

After

Replacement

Bit

inserted

Remarks

00101101 00101101 1 No change in

bit pattern

00011100 00011101 1 Change in

bit pattern(1)

11011100 11011101 1 Change in

bit pattern(1)

10100110 10100110 0 No change in

bit pattern

11000100 11000100 0 Change in

bit pattern(0)

00001100 00000100 0 No change in

bit pattern

11010010 11010010 0 No change in

bit pattern

10101101 10100100 0 No change in

bit pattern

Here we can see that out of 8 bytes only 3 bytes(red marked)
get changed only at the LSB position. That means the

change of byte is minimum. The human eye is not very

sensitive so therefore after embedding a secret message in a

cover file our eye may not be able to find the difference

between the original message and the message after

inserting some secret text or message on to it. To embed

secret message we first skip 5000 bytes from the last byte of

the cover file. After that according to size of the secret

message (say n bytes) we skip 8*n bytes. After that we start

Sayak Guha et. al., Journal of Global Research in Computer Science, 3 (4), April 2012, 11-16

© JGRCS 2010, All Rights Reserved 12

to insert the bits of the secret file into the cover file. The size

of the cover file should not be less than 10*sizeof(secret

message). For extracting embedded file from the cover file

we have to perform the following:

We have to enter the password while embedding a secret
message file. Once we get the file size we follow simply the

reverse process of embedding a file in the cover file. We

read bit from LSB of each byte and accumulate 8 bits to

form a character and we immediately write that character on

to a file.

We made an exhaustive experiment on different types of

host files and also the secret messages and found the

following combinations are most successful:

Table-2 Cover file Type and Secret Message File Type

Sl.No. Cover file type Secret file type used

1 .BMP .BMP,.DOC,.TXT,.WAV,.MP3,.XLS,

.PPT,.AVI,.JPG,.EXE..COM

2. .JPG Any file type provided the size of the

secret message file is very small in

compare to cover file

3. .DOC Any small file

4. .WAV .BMP,.JPG,.TXT,.DOC

5. .AVI .TXT,.WAV,.JPEG

6. .PDF Any small file

After doing exhaustive study on all possible type of files we

conclude that the .BMP file is the most appropriate file

which can be used for embedding any type of file.

TTJSA ALGORITHM:

TTJSA is a combination of 3 distinct cryptographic

methods, namely, (i) Generalized Modified Vernam Cipher

Method, (ii) MSA method [1] and (iii) NJJSA method [7].

To initiate the encryption process a user has to enter a text-

key which may be at most 16 characters in length. From the
text-key the randomization number and the encryption

number is calculated using a method proposed by Nath et al.

[1]. A minor change in the text-key will change the

randomization number and the encryption number quite a

lot. We have tested this method on various types of known

text files and we have found that, even if there is repetition

in the input file, the encrypted file contains no repetition of

patterns.

Now here we will describe TTJSA algorithm:

Algorithm for Encryption:

Step 1: Start

Step 2: Initialize the matrix mat[16][16] with numbers 0 to

255 in row major wise.

Step 3: call keygen() to calculate randomization number

(=times), encryption number (=secure)

Step 4: call randomization () function to randomize the

contents of mat [16][16].
Step 5: set times2=times

Step 6: copy file f1 into file2

Step 7: set k=1

Step 8: if k>secure go to Step 15

Step 9: p=k%6

Step 10: if p=0

call vernamenc(file2,outf1)

 set times=times2

 call njjsaa(outf1,outf2)

call msa_encryption(outf2,file1)

 else if p=1

 call vernamenc(file2,outf1)

 set times=times2

 call msa_encryption(outf1,file1)

 call file_rev(file1,outf1)
 call njjsaa(outf1,file2)

 call msa_encryption(file2,outf1)

 call vernamenc(outf1,file1)

 set times=times2

 else if p=2

 call msa_encryption(file2,outf1)

 call vernamenc(outf1,outf2)

 set times=times2

 call njjsaa(outf2,file1)

 else if p=3

 call msa_encryption(file2,outf1)

 call njjsaa(outf1,outf2)
 call vernamenc(outf2,file1)

 set times=times2

 else if p=4

 call njjsaa(file2,outf1)

call vernamenc(outf1,outf2)

 set times=times2

 call msa_encryption(outf2,file1)

 else if p=5

 call njjsaa(file2,outf1)

 call msa_encryption(outf1,outf2)

 call vernamenc(outf2,file1)
 set times=times2

Step 11: call function file_rev(file1,outf1)

Step 12: copy file outf1 into file2

Step 13: k=k+1

Step 14: goto Step 8

Step 15: End

Algorithm of Vernamenc (f1,f2)

The algorithm of vernamenc() function is a block cipher

method. The block-wise encryption procedure is shown in

Figure 2. „Feedback‟ of each character is used for the

encryption of the next character.

Step 1: Start vernamenc() function

Step 2: The matrix mat[16][16] is initialized with numbers

0-255 in row major wise order

Step 3: call function randomization() to randomize the

contents of mat[16][16].

Step 4: Copy the elements of random matrix mat[16][16]
into key[256] (row major wise)

Step 5: set pass=1, times3=1, ch1=0

Step 6: Read a block from the input file f1 where number of

characters in the block ≤ 256 characters

Step 7: If block size < 256 then goto Step 15

Step 8: copy all the characters of the block into an array

str[256]

Step 9: call function encryption() where str[] is passed as

parameter along with the size of the current block

Step 10: if pass=1

 set times=(times+times3*11)%64

 set pass=pass+1
else if pass=2

 set times=(times+times3*3)%64

 set pass=pass+1

 else if pass=3

 set times=(times+times3*7)%64

Sayak Guha et. al., Journal of Global Research in Computer Science, 3 (4), April 2012, 11-16

© JGRCS 2010, All Rights Reserved 13

 set pass=pass+1

 else if pass=4

 set times=(times+times3*13)%64

 set pass=pass+1

else if pass=5

 set times=(times+times3*times3)%64
 set pass=pass+1

 else if pass=6

set times=(times+times3*times3*times3)%64

 set pass=1

Step 11: call function randomization() with current value of

times

Step 12: copy the elements of mat[16][16] into key[256]

Step 13: read the next block

Step 14: goto Step 7

Step 15: copy the last block (residual characters, if any) into

str[]

Step 16: call function encryption() using str[] and the no. of
residual characters

Step 17: Return

Algorithm of function Encryption (str[],n):

Step 1: Start encryption() function

Step 2: set ch1=0
Step 3: calculate ch=(str[0]+key[0]+ch1)%256

Step 4: write ch into output file

Step 5: set ch1=ch

Step 6: set i=1

Step 7: if i≥n then goto Step 13

Step 8: ch=(str[i]+key[i]+ch1)%256

Step 9: write ch into the output file

Step 10: ch1=ch

Step 11: i=i+1

Step 12: goto Step 7

Step 13: Return

Algorithm for Decryption:

Step 1: Start

Step 2: initialize mat[16][16] with 0-255 in row major wise

Step 3: call function keygen() to generate times and secure

Step 4: call function randomization()

Step 5: set times2=times

Step 6: call file_rev(f1,outf1)
Step 7: set k=secure

Step 8: if k<1 go to Step 15

Step 9: call function file_rev(outf1,file2)

Step 10: set p=k%6

Step 11: if p=0

 call msa_decryption(file2,outf1)

 call njjsaa(outf1,outf2)

 call vernamdec(outf2,file2)

 set times=times2

 else if p=1

 call function vernamdec(file2,outf1)
 set times=times2

 call function msa_decryption(outf1,outf2)

 call fumction njjsaa(outf2,file2)

 call function file_rev(file2,outf2)

 call function msa_decryption(outf2,outf1)

 call function vernamdec(outf1,file2)

 set times=times2

 else if p=2

 call njjsaa(file2,outf1)

 call vernamdec(outf1,outf2)

 set times=times2

 call msa_decryption(outf2,file2)

 else if p=3

 call vernamdec(file2,outf1)

 set times=times2

 call njjsaa(outf1,outf2)
call msa_decryption(outf2,file2)

 else if p=4

 call msa_decryption(file2,outf1)

 call vernamdec(outf1,outf2)

 set times=times2

 call njjsaa(outf2,file2)

 else if p=5

 call vernamdec(file2,outf1)

 set times=times2

 call msa_decryption(outf1,outf2)

 call njjsaa(outf2,file2)

Step 12: copy the content of file2 to outf1
Step 13: set k=k-1

Step 14: Goto Step 8

Step 15: End

Algorithm of function Vernamdec (f1,f2):

The algorithm of vernamdec() function is same as
vernamenc() function. Here the only difference is that

decryption() function is called instead of encryption()

function.

Algorithm of Decryption (str[],n):

Step 1: Start

Step 2: ch1=0
Step 3: ch=(256+str[0]-key[0]-ch1)%256

Step 4: write ch into the output file

Step 5: i=1

Step 6: if i≥n then goto Step 12

Step 7: ch=(256+str[i]-key[i]-str[i-1]) %256

Step 8: write ch into the output file

Step 9: i=i+1

Step 10: goto Step 6

Step 11: ch1=str[n-1]

Step 12: Return

Algorithm of Function file_rev (f1,f2) :

Step 1: Start

Step 2: open the file f1 in input mode

Step 3: open the file f2 in output mode

Step 4: calculate n=sizeof(file f1)

Step 5: move file pointer to n

Step 6: read one byte
Step 7: write the byte on f2

Step 8: n=n-1

Step 9: if n>=1 then goto step-6

Step 10: close file f1, f2

Step 11: Return

The encryption number (=secure) and randomization

number (=times) is calculated according to the method

mentioned in MSA algorithm [1].

NJJSAA ALGORITHM

Nath et al. [2] proposed a method which is basically a bit

manipulation method to encrypt or to decrypt any file.

Sayak Guha et. al., Journal of Global Research in Computer Science, 3 (4), April 2012, 11-16

© JGRCS 2010, All Rights Reserved 14

Step 1: Read 32 bytes at a time from the input file.

Step 2: Convert 32 bytes into 256 bits and store in some 1-

dimensional array.

Step 3: Choose the first bit from the bit stream and also the

corresponding number(n) from the key matrix.

Interchange the 1st bit and the n-th bit of the bit stream.
Step 4: Repeat step-3 for 2nd bit, 3rd bit…256-th bit of the

bit stream

Step 5: Perform right shift by one bit.

Step 6: Perform bit(1) XOR bit(2), bit(3) XOR

bit(4),…,bit(255) XOR bit(256)

Step 7: Repeat Step 5 with 2 bit right, 3 bit right,…,n bit

right shift followed by Step 6 after each completion of right

bit shift.

MSA (MEHEBOOB, SAIMA, ASOKE) ENCRYPTION

AND DECRYPTION ALGORITHM

Nath et al. [2] proposed a symmetric key method where they

have used a random key generator for generating the initial

key and that key is used for encrypting the given source file.

MSA method is basically a substitution method where we

take 2 characters from any input file and then search the
corresponding characters from the random key matrix and

store the encrypted data in another file. MSA method

provides us multiple encryptions and multiple decryptions.

The key matrix (16x16) is formed from all characters

(ASCII code 0 to 255) in a random order.

The randomization of key matrix is done using the following

function calls:

Step-1: call Function cycling()

Step-2: call Function upshift()

Step-3: call Function downshift()
Step-4: call Function leftshift()

Step-5: call Function rightshift()

For detail randomization methods we refer to the done by

Nath et al. [1].

Table-4

A B C D

E F G H

I J K L

M N O P

Table-3 Key Matrix

Now we will describe how we perform the encryption
process using MSA algorithm.

Case I: Suppose we want to encrypt FF then it will take as

GG which is just one character after F in the same row.

Case II: Suppose we want to encrypt FK where F and K

appears in two different rows and two different columns. FK

will be encrypted to KH (FKGJHKKH).

Case III: Suppose we want to encrypt EF where EF occurs

in the same row. Here EF will be converted to HG.

After encrypting 2 bytes we write the encrypted bytes on a

new output file. We apply the entire encryption method

multiple times. The encryption number will be determined

by the process described in the method described by Nath et

al [1].

The decryption method will be just the reverse process

of the encryption method as described above.

THE OVERALL ENCRYPTION AND DECRYPTION

METHOD

The three methods are applied on the plain text based on a

decision-making parameter. The order in which the three

methods are used in a pass is dynamic. Again each method
can be used in a pass more than one time. We suggest that

the TTJSA method should be used more than one time in a

pass to give better result.

CHANGING LSB BIT OF COVER FILE USING

ENCRYPTED SECRET MESSAGE FILE

In the present work the last 5000 bytes of the cover file we
reserved for storing the password and the size of the secret

message file. After that we subtract n*(size of the secret

message file) from the size of the cover file. Here n=8

depending on how many bytes we have used to embed one

byte of the secret message file in the cover file. For strong

password we have used a simple algorithm as follows: We

take XOR operation with each byte of the password with

255 and insert it into the cover file. To retrieve the password

we read the byte from the cover file and apply XOR

operation with 255 to get back original password. To embed

any secret message we have to enter the password and to
extract message we have to enter the same password. The

size of the secret message file we convert into 32 bits binary

and then convert it into 4 characters and write onto cover

file. When we want to extract encrypted secret message

from a cover file then we first extract the file size from the

cover file and extract the same amount of bytes from cover

file. Now we will describe the algorithms which we have

used in our present study:

We read one byte at a time from the encrypted secret

message file (ESMF) and then we extract 8 bits from that

byte. After that we read 8 consecutive bytes from the cover
file(CF). We check the LSB of each byte of that 8 byte

chunk whether it is different from the bits of ESMF. If it

different then we replace that bit by the bit we obtain from

the ESMF. Our program also counts how many bits we

change and how many bytes we change and then we also

calculate the percentage of bits changed and percentage of

bytes changed in the CF. Now we will demonstrate in a

simple case :

PLAIN

TEXT

ENCRYPTED

TEXT1

ENCRYPTED

TEXT2

FINAL

ENCRYPTED

TEXT
TTJSA

MSA

N
JJ

S
A

A

Sayak Guha et. al., Journal of Global Research in Computer Science, 3 (4), April 2012, 11-16

© JGRCS 2010, All Rights Reserved 15

Suppose we want to embed “A” in the cover text

“BBCDEFGH”. Now we will show how this cover text will

be modified after we insert “A” within it.

Table -5 Changing Lsb

Origi

nal

Text

Bit string Bit to be

inserted in

LSB

position

Changed Bit

string

Chang

ed

Text

B 01000010 0 01000010 B

B 01000010 1 01000011 C

C 01000011 0 01000010 B

D 01000100 0 01000100 D

E 01000101 0 01000100 D

F 01000110 0 01000110 F

G 01000111 0 01000110 F

H 01001000 1 01001001 I

Here we can see that to embed “A” we modify 5 bits out of

64 bits. After embedding “A” in cover text “BBCDEFGH”

the cover text converts to “BCBDDFFI”. We can see that

the change in cover text is prominent. Total 5 characters is

been modified. For text file this change is noticeable but

when we do it in some image or audio file then it will not be
so prominent. To extract byte from the cover file we follow

the reverse process which we apply in case of encoding the

message. We simply extract serially one by one from the

cover file and then we club 8 bits and convert it to a

character and then we write it to another file. Now this

extracted file is encrypted form and hence we apply

decryption process which will be the reverse of encryption

process to get back original secret message file.

RESULTS AND DISCUSSION

Case-1: Cover File type=.jpg Secret File type=.jpg

 + MSAERC1.c =

Figure_1:Cover file name: sxc.jpg Figure _2:Secret message File:msaerc1.c Figure _3: Embedded Cover file (Size=1129KB)

(Size=4KB) File name: sxc1.jpg

(secret message encrypted before embedding) (Size=1129KB)

Case-2: Cover File type=.AVI Secret message file =.jpg

 + =

Figure _4: Cover File name : rhinos.avi Figure _5:Secret message File : joy1.jpg Figure_6:Embedded Cover

 (Size=768000 B) (Size=1870 B) File name :rhinos.avi

(secret message encrypted before embedding) (size=768000 B)

Case-3: Cover File type=.BMP secret message file =.bmp

 + =

Figure _7: Cover file name =image2.bmp Figure _8: Secret message file= Figure _9: Embedded cover file

 (size=673KB) sg3.bmp(size=50KB) name=image2n.bmp

 (The secret message file was (size=673KB)

 Encrypted while embedding)

 Case-4: Cover File type=..DOC(MS-Word File) secret message file =.C

 Mydoc.doc + xxprog2.c = Mydoc.doc

Figure _10: Cover File Name= Figure _11: Secret message File name Figure _12:Embedded Cover File

 mydoc.doc =xxprog2.c name= mydoc.doc

 (Size=22528 B) (size=136 B) (Size=22528B)

(The encrypted secret message file is embedded)

Sayak Guha et. al., Journal of Global Research in Computer Science, 3 (4), April 2012, 11-16

© JGRCS 2010, All Rights Reserved 16

CONCLUSION

In the present work we hide some secret message inside any
cover file in encrypted form so that no one will be able to

extract actual secret message. Here we change LSB bit of

the cover file. Our encryption mechanism is too hard to

break by any intruder. Without knowing the actual

encryption process no one can unhide the actual secret

message. TTJSA is free from differential attack or simple

plain text attack. Even if the intruder could extract the data

from the embed cover file but he/she will not be able to

decrypt it just by using some brute force method. In the

present method there two way protection one at the time of

unhide data and a second key at the time decrypting the

data. These two keys to preserved by user in safe custody to
extract secret message from any host file.

The merit of this method is that if we change the key_text

little bit then the whole encryption and decryption process

will change. This method may be most suitable for water

marking. The steganography method may be further

enhanced by using QR-code initially for data hiding and

then the entire QR-code may be inserted in some image. In

QR-code again we can insert data in encrypted form. This

will give more strength in steganography method. If we

compress the secret message first and then encrypt it and
then finally embed it then we can insert more data in same

host file. Presently we are working on last two methods for

data hiding.

ACKNOWLEDGEMENT

The authors are sincerely express their gratitude to

Department of Computer Science, St. Xavier‟s

College(Autonomous) for providing necessary help and

assistance. AN is also extremely grateful to University

Grants Commission for providing fund for continuing

minor research project on Data encryption using symmetric

key and public key crypto system. JN is grateful to A.K.

Chaudhury School of I.T. for giving inspiration for doing

research work.

REFERENCES

[1]. Symmetric Key Cryptography using Random Key

generator : Asoke Nath, Saima Ghosh, Meheboob Alam

Mallik: “Proceedings of International conference on

security and management(SAM‟10” held at Las Vegas,

USA Jull 12-15, 2010), P-Vol-2, 239-244(2010).

[2]. Data Hiding and Retrieval : Asoke Nath, Sankar Das,

Amlan Chakraborti, published in IEEE “Proceedings of

International Conference on Computational Intelligence and

Communication Networks (CICN 2010)” held from 26-28

NOV‟2010 at Bhupal.

[3]. Advanced steganographic approach for hiding encrypted

secret message in LSB, LSB+1, LSB+2 and LSB+3 bits in

non standard cover files: Joyshree Nath, Sankar Das,

Shalabh Agarwal and Asoke Nath, International Journal of

Computer Applications, Vol14-No.7,Page-31-35,

Feb(2011).

[4]. Advanced Symmetric key Cryptography using extended

MSA method: DJSSA symmetric key algorithm: Dripto

Chatterjee, Joyshree Nath, Soumitra Mondal, Suvadeep

Dasgupta and Asoke Nath, Jounal of Computing, Vol3,

issue-2, Page 66-71,Feb(2011).

[5]. Advanced Steganography Algorithm using encrypted secret

message : Joyshree Nath and Asoke Nath, International

Journal of Advanced Computer Science and Applications,

Vol-2, No-3, Page-19-24, March(2011).

[6]. A Challenge in hiding encrypted message in LSB and

LSB+1 bit positions in any cover files : executable files,

Microsoft office files and database files, image files, audio

files and video files : Joyshree Nath, Sankar Das, Shalabh

Agarwal and Asoke Nath : JGRCS, Vol-2, No.4,

Page:180-185,April (2011)

[7]. New Symmetric key Cryptographic algorithm using

combined bit manipulation and MSA encryption

algorithm: NJJSAA symmetric key algorithm :Neeraj

Khanna, Joel James,Joyshree Nath, Sayantan Chakraborty,

Amlan Chakrabarti and Asoke Nath : Proceedings of

IEEE CSNT-2011 held at SMVDU(Jammu) 03-06 June

2011, Page 125-130(2011)..

[8]. New Data Hiding Algorithm in MATLAB using Encrypted

secret message :Agniswar Dutta, Abhirup Kumar Sen,

Sankar Das,Shalabh Agarwal and Asoke Nath :

Proceedings of IEEE CSNT-2011 held at

SMVDU(Jammu) 03-06 June 2011, Page 262-267(2011).

[9]. An efficient data hiding method using encrypted secret

message obtained by MSA algorithm: Joyshree Nath,

Meheboob Alam Mallik , Saima Ghosh and Asoke Nath :

Proceedings of the International conference Worldcomp

2011 held at Las Vegas(USA), 18-21 Jul(2011), Page 312-

318, Vol-1(2011)

[10]. Symmetric key cryptosystem using combined

cryptographic algorithms- generalized modified vernam

cipher method, MSA method and NJJSAA method: TTJSA

algorithm – Trisha Chatterjee, Tamodeep Das, Joyshree

Nath, Shayan Dey and Asoke Nath, Proceedings of IEEE

International conference : World Congress WICT-2011 t

held at Mumbai University 11-14 Dec, 2011, Page No.

1179-1184(2011).

[11]. A new randomized data hiding algorithm with encrypted

secret message using modified generalized Vernam Cipher

Method: RAN-SEC algorithm, Rishav Ray, Jeeyan Sanyal,

Tripti Das, Kaushik Goswami, Sankar Das and Asoke Nath,

Proceedings of IEEE International conference : World

Congress WICT-2011 held at Mumbai University 11-14

Dec, 2011, Page No. 1215-1220 (2011).

[12]. Jpeg20000 Standard for Image Compression Concepts

algorithms and VLSI Architectures by Tinku Acharya and

Ping-Sing Tsai, Wiley Interscience.

