
Volume 2, No. 4, April 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 81

A New Proposed Two Processor Based CPU Scheduling Algorithm with Varying Time

quantum for Real Time Systems

*1
H.S. Behera, Jajnaseni Panda,

2
Dipanwita Thakur and

3
Subasini Sahoo

Department of Computer Science and Engineering, Veer Surendra Sai University of Technology (VSSUT),

Burla Odisha, India
E-mail: hsbehera_india@yahoo.com1 ,dipanwitathakur31@gmail.com2 and subasini.vssut@gmail.com3

Abstract— The performance and efficiency of multitasking operating systems mainly depends upon the use of CPU scheduling

algorithm. In time shared system, Round Robin (RR) scheduling gives optimal solution but it may not be suitable for real time

systems because it gives more number of context switches and larger waiting time and larger turnaround time. In this paper two
processor based CPU scheduling (TPBCS) algorithm is proposed, where one processor is exclusively for CPU-intensive processes

and the other processor is exclusively for I/O-intensive processes. This approach dispatches the processes to appropriate processor

according to their percentage of CPU or I/O requirement. After the processes are dispatched to respective processors, the time

quantum is calculated and the processes are executed in increasing order of their burst time. Experimental analysis shows that our

proposed algorithm performs better result by reducing the average waiting time, average turnaround time.

Keywords— Scheduling, Round Robin scheduling, Context Switches, Waiting Time, Turnaround time.

INTRODUCTION

CPU scheduling is a very essential task of operating system

in multitasking environment. When there is more than one

process to be executed, a ready queue is maintained. Here in
a two processor system, ready queue is maintained for each

processor. The operating system follows a predefined

procedure for selecting process from a number of processes

waiting in the ready queue and assigns the CPU to the

process. Careful attention is required to assure fairness and

avoid starvation during allocation of CPU to the processes.

Scheduling decision always try to minimize average waiting

time, average turnaround time and number of context

switches.

 It is a good practice to schedule CPU-intensive

processes separately from I/O–intensive processes, which
means one CPU is exclusively dedicated for CPU-intensive

processes and another CPU is exclusively dedicated for I/O-

intensive processes. This is because I/O-intensive processes

do not need to wait for their turn after several CPU-intensive

processes execute. It can reduce response time significantly

for interactive I/O processes.

 In our proposed algorithm we have used percentage

values to classify the processes into two groups of CPU-

intensive and I/O-intensive processes.

A. Scheduling Algorithms:

Many CPU scheduling algorithms are used such as First

Come First served scheduling (FCFS), shortest job First

scheduling (SJF), Priority Scheduling etc. All the above

algorithms are non-preemptive in nature and also not

suitable for time sharing systems. In the First-Come-First-

Served (FCFS), the process that arrives first in the ready

queue is allocated the CPU first. In SJF, when the CPU is

available, it is assigned to the process that has the smallest

next CPU burst. If two processes have same next CPU burst

time, FCFS scheduling is used to break the tie. In priority

scheduling algorithm a priority is given to each process and

the process having highest priority is executed first and so

on. Round Robin scheduling is similar to FCFS scheduling,
but preemption is added to switch between processes. A

small unit of time, called a time quantum or time slice is

defined and the CPU scheduler goes around the ready

queue, allocating the CPU to each process for a time interval

of up to 1 time quantum. The Round Robin (RR) Scheduling

is one of the most popular scheduling algorithms found in

computer systems today. In addition it is designed especially

for time sharing systems and found in multiple processor

systems.

B. Related Work:

In the recent past, a number of CPU scheduling mechanisms

have been developed for predictable allocation of processor.

Self-Adjustment Time Quantum in Round Robin Algorithm

[2] is based on a new approach called dynamic time

quantum in which, time quantum is repeatedly adjusted

according to the burst time of the running processes.
Dynamic Quantum with Readjusted Round Robin

Scheduling Algorithm [1] uses the job mix order for the

algorithm in [2]. According to [1], from a list of N

processes, the process which needs minimum CPU time is

assigned the time quantum first and then highest from the

list and so on till the Nth process. Again in the 2nd round,

the time quantum is calculated from the remaining CPU

burst time of the processes and is assigned to the processes

and so on. Both [2] and [1] are better than RR scheduling

H.S. Behera et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 82

and overcomes the limitations of RR scheduling regarding

the average waiting time, average turnaround time and
context switch. Algorithm in [3] uses an approximation of

K-means clustering algorithm to group processes of same

kind together and dispatches them to appropriate processor.

A new fair-share scheduling with weighted time slice [4]

assigns a weight to each process and the process having the

least burst time is assigned the largest weight. The time

quantum is calculated dynamically, using weighted time

slice method and then the processes are executed. [5]

calculates the original time slice suited to the burst time of

each processes and then dynamic ITS (Intelligent Time

Slice) is found out in conjunction with the SRTN

algorithm[7]. Algorithm in [6] is improved by using
dynamic time quantum and multi cyclic time quantum

C. Our Contribution:
We have proposed a new scheduling algorithm for two

processor systems, that first separates the CPU-intensive and

I/O-intensive processes into two groups and dispatch them

to two different processors. Then the processes are executed

in each processor. Our execution approach gives better

result than Round-Robin (RR) and Dynamic Quantum with

Readjusted Round Robin Scheduling Algorithm (DQRRR)

in [1]. Instead of taking job mix order we have taken the

processes in ascending order in the two ready queues of two

processors and the time quantum is calculated using our

proposed method which changes with the every round of
execution.

D. Organization of the Paper:

Section II shows the background work. Section III presents

the pseudo code and illustration of our proposed algorithm.

In section IV, experimental analysis is discussed. And

finally the conclusion and future work is presented in

section V.

BACKGROUND PRELIMINARIES

A. Terminologies:

A process is a program in execution. Ready queue holds the

processes waiting to be executed or to be assigned to the

processer. Burst time (bt) is the time, for which a process

requires the CPU for execution. The time at which the

process arrives is called the arrival time (at).Time quantum

(tq) or time slice is the period of time given to each process

to have CPU. Average waiting time (awt) is the time gap

between the arrival of a process and its response by the

CPU. Average Turnaround time (atat) is the time gap
between the instant of process arrival and the instant of its

completion. Average Response time (art) is the time taken to

start responding a process. The number of times the CPU

switches from one process to another is called the context

switches (cs). PCCPU and PCI/O are the percentage

requirement of a process for CPU and I/O respectively.

B. Dynamic Quantum with Re-adjusted Round Robin [1]

Scheduling Algorithm

The DQRRR scheduling [1] has improved the RR

scheduling by improving the turnaround time, waiting time

and number of context switches. Processes are arranged in

job mix order in the ready queue and time quantum is found

using median method. The CPU scheduler goes around the
ready queue, allocating the CPU to each process for a time

interval of up to 1 time quantum. Again the time quantum is

calculated from the remaining burst time of the processes

and so on. New processes are added to the tail of the ready

queue. The CPU scheduler picks the first process from the

ready queue and allocates the CPU to the process for 1 time

quantum.

PROPOSED APPROACH

The proposed algorithm TPBCS finds the time quantum in

an intelligent way which gives better result in a two-

processor environment than Dynamic Quantum with

Readjusted Round Robin Scheduling Algorithm

[1](DQRRR) and RR scheduling. Out of two processors one

is solely dedicated to execute CPU-intensive processes

(CPU1) and the other CPU is solely dedicated to execute
I/O-intensive processes (CPU2). The algorithm is divided

into part I and part II. Part I algorithm classifies a process

and dispatches it into an appropriate ready queue. Part II

algorithm calculates the time quantum for both CPUs in a

dynamic manner in each cycle of execution. The time

quantum is repeatedly adjusted in every round, according to

the remaining burst time of the currently running processes.

We have taken an approach to get the optimal time quantum,

where a percentage value <PCCPU, PCI/O> is assigned to each

processes. For instance, <75, 25> represents a process

whose time comprises 75% of CPU activities and 25% of

I/O activities. For instance in database systems, a process
can easily spend 70% of its time accessing the hard disk and

30% on computation. Here the shorter processes are

executed first, to give better turnaround time and waiting

time.

The Time Quantum (tq) is calculated as below.

 tq1 (for CPU1) =

 CPU[i] . bt[i])

 CPU[i]

tq2 (for CPU2) =

 I/O[i] . bt[i])

 I/O[i]

Where, n1= number of processes in the ready queue for

CPU1

 n2= number of processes in the ready queue for

CPU2

 PCCPU[i] = Percentage requirement of process i for

CPU

 PCI/O[i] = Percentage requirement of process i for

I/O

A. Proposed Algorithm:

Algorithm Part I

H.S. Behera et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 83

While there is an entering process P do {

 if (PCCPU[p] >=70)

 Enqueue (CPU1 Ready queue, P)
 else if (PCI/O[p] >=70)

 Enqueue (CPU2 Ready queue,P)

}

Algorithm Part II for both CPU1 and CPU2

 Initialize: awt=0,atat=0.

 while (CPU1 ready queue queue!= NULL)

 find the time quantum tq

 //Sort the processes in ready queue
 for i=1 to n1

 Put the processes with ascending order of burst

time

 in ready queue

 end for

 //Assign tq to each process

 for i=1 to n1
 if(b[i] < tq)

 p[i]=b[i]=tq and rb[i]=0

 else if (b[i] = t)

 p[i]=tq and rb[i]=0
 else

 p[i]=tq and rb[i]=b[i]-tq

 end of for

 if rb[i]=0,remove the process from the ready queue

 if rb[i] > 0, insert the process in the ready queue with

rb[i]

 end of while

 awt , atat are calculated.

 stop & exit.

Algorithm Part II for CPU2 is same as for CPU1

Here p[i] is process i, b[i] is the burst time of process i, rb[i]

is the remaining burst time of process i.

B. Time Complexity:

Any freshly arriving task would be inserted at the end of the

ready queue. Each task insertion will be achieved in O(1) or

constant time in Algorithm part I. In algorithm part II, the

order of sorting the processes in the ready queue is

O(n1logn1) for CPU1 and O(n2logn2) for CPU2. Then the

assignment of tq to each processes will be achieved in O(n1)

and O(n2) for CPU1 and CPU2 respectively.

C. Illustration:

We have considered an example to demonstrate the above

algorithm .The burst time sequence are:22, 31, 53, 69, 79

assigned to processes P1,P2,P3,P4,P5 along with
Membership values <80, 20>, <79, 21>, <25, 75>, <11,

89>, <9, 91> respectively. The processes (P1,P2) having

PCCPU more than 70 are fed into CPU1 ready queue and the

processes (P3 P4, P5) having PCI/O more than 70 are fed

into CPU2 ready queue. Inside the ready queues processes

are arranged in ascending order of burst time(bt). Then the

time quantum is calculated in each CPU using the proposed
formula.Using the above algorithm the tq calculated for

CPU1 are 26 and 5 and tq for CPU2 are 68, 6 and 5

respectively.

EXPERIMENTAL ANALYSIS

A. Assumptions

The environment where all the experiments are performed is

a two processor environment and all the processes are

independent. Time quantum is assumed to be not more than

the maximum burst time. All the attributes like burst time,

number of processes, Percentage values of the processes for
each processor are known before submitting the processes.

B. Experimental Frame Work

Our experiments consists of several input and output

parameters. The input parameters consist of burst time,

percentage values, time quantum and the number of

processes. The output parameters consist of average waiting

time, average turnaround time.

C. Experiments Performed

To evaluate the performance of our proposed algorithm, we

have taken a set of processes in three different cases. This

algorithm can work effectively with large number of data.

In each case we have compared the experimental results of

algorithm with the scheduling algorithm DQRRR [1] and

with Round-Robin (RR) algorithm.

Increasing Order:

We consider six processes p1, p2, p3, p4, p5 and p6

arriving at time 0 with burst time 28, 52, 95, 110, 141, 153
respectively shown in Table I. Table II and Table III shows

the comparing result of DQRRR algorithm, RR algorithm

and our proposed TPCS algorithm for CPU1 and CPU2

respectively.

Table I: Data in Increasing Order

No. of process bt PCCPU PCI⁄O

P1 28 80 20

P2 52 70 30

P3 95 95 50

P4 110 25 75

P5 141 15 85

P6 153 10 90

 tq= 61 tq=34

P1 P2 P3 P3

H.S. Behera et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 84

0 28 80 141

175

Fig I: Gantt chart of TPCS for CPU1 in Table I

 tq=52 tq=43

P1 P3 P2 P3

0 28 80 132

175

Fig II: Gantt chart for DQRRR for CPU1 in Table I

 tq=136 tq=11 tq=6

P4 P5 P6 P5 P6 P6

0 110 246 382 387 398

404

 Fig III: Gantt chart of TPCS for CPU2 in Table I

 tq=141 tq=12

P4 P6 P5 P6

0 110 251 392

404

Fig IV: Gantt chart for DQRRR for CPU2 in Table I

Table II: Comparison between DQRRR, RR and our TPCS

algorithm for CPU1

Algorithms TPCS DQRRR RR

tq 61,34 52,43 35

awt 36 53.3 47.6

atat 94.3 111.6 106

Table III: Comparison between DQRRR, RR and DSMT for

CPU2

Algorithms TPCS DQRRR RR

tq 136,11,6 141,12 35

awt 165.7 167.3 248

atat 300.3 302 371.67

Decreasing Order:

We consider six processes p1, p2, p3, p4, p5, p6 and p7

arriving at time 0 with burst time 254, 209, 182, 99, 42, 58

and 37 respectively shown in Table IV. Table V and Table

VI shows the comparing result of DQRRR, RR and our

proposed TPCS algorithm for CPU1 and CPU2 respectively.

Table IV. Data in decreasing Order

No. of process bt PCCPU PCI/O

P1 254 30 70

P2 209 82 18

P3 182 79 21

P4 99 12 88

P5 72 50 95

P6 58 91 90

P7 37 85 15

 tq=118 tq= 78 tq= 13

P7 P6 P3 P2 P3 P2 P2

0 37 95 213 331 395 473 486

Fig. V: Gantt chart for TPCS for CPU1 in Table IV

 tq=120 tq=75 tq=14

P7 P2 P6 P3 P2 P3 P2

0 37 157 215 335 410 472 486

 Fig. VI: Gantt chart for DQRRR for CPU1 in Table IV

 tq=131 tq=123

P5 P4 P1 P1

0 72 171 302 425

Fig.VII: Gantt chart for TPCS for CPU2 in Table IV

 tq=99 tq=155

P5 P4 P1 P1

0 72 171 270 425

Fig. VIII: Gantt chart for DQRRR for CPU2 in Table IV

Table V: Comparison between DQRRR, RR and TPCS for

CPU1

Algorithms TPCS DQRRR RR

tq 118,78,13 120,75,14 35

H.S. Behera et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 85

awt 131.75 181 237

atat 253.25 302.5 358.5

Table VI: Comparison between DQRRR, RR and TPCS for

CPU2

Algorithms TPCS DQRRR RR

tq 131,123 99,155 35

awt 81 114 183

atat 222.67 255.67 325

Random Order:

We consider six processes p1, p2, p3, p4, p5, p6 and p7

arriving at time 0 with burst time 94, 52, 39, 155, 113, 238

and 167respectively shown in Table VI. Table VII and

Table IX shows the comparing result of DQRRR algorithm,

RR algorithm and our proposed algorithm TPCS for CPU1

and CPU2 respectively.

Table VII. Data in Random Order

No. of process bt PCCPU PCI/O

P1 94 12 88

P2 52 90 10

P3 39 85 15

P4 155 17 83

P5 113 77 23

P6 238 21 79

P7 167 90 91

 tq=66 tq=47

P3 P2 P5 P5

0 39 91 157

204

 Fig IX: Gantt chart for TPCS for CPU1 in Table VII

 tq=52 tq=61

P3 P5 P2 P5

0 39 91 143

204 Fig.X: Gantt chart for DQRRR for CPU1 in Table

VII

 tq=162 tq=38

tq=38

P1 P4 P7 P6 P7 P6 P6

0 94 249 411 573 578 616

654

Fig XI: Gantt chart for TPCS for CPU2 in Table VII

 tq=161 tq=41 tq=36

P1 P6 P4 P7 P6 P7 P6

0 94 255 410 571 612 618

654

Fig.XII: Gantt chart for DQRRR for CPU2 in Table VII

Table VIII. Comparison between DQRRR, RR and TPCS

for CPU1

Algorithms TPCS DQRRR RR

tq 66,47 52,61 35

awt 43.3 60.7 82.67

atat 111.3 128.7 452

Table IX. Comparison between DQRRR, RR and TPCS

for CPU2

Algorithms TPCS DQRRR RR

tq 162,38,38 161,41,36 35

awt 230.25 280 356

atat 393.75 444 519.5

H.S. Behera et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 86

Fig. XIII: Comparison of average turnaround time between
DQRRR, RR and TPCS for CPU1

Fig XIV: Comparison of average turnaround time between

DQRRR, RR and TPCS for CPU2

Fig XV: Comparison of average waiting time between

DQRRR, RR and TPCS for CPU1

Fig XV: Comparison of average waiting time between

DQRRR, RR and TPCS for CPU2

CPU Utilization:

Percentage of time that CPU is busy (not idle), over some

period of time, is called CPU utilization. The CPU

utilization should be 100% in real time systems. In our

proposed algorithm CPU-utilization is 100% since there is

no context switch time between any two processes. The

CPU remains busy all the time in executing the processes.

CONCLUSION

In this paper a new scheduling algorithm TPBCS, which is a

modified Round Robin algorithm, used on a two processor

system. One processor is designated exclusively for CPU-

intensive processes and the other CPU is designated

exclusively for I/O-intensive processes. The above
comparisons show that the proposed TPBCS algorithm

provides much better results than the algorithm proposed in

[1] and Round-Robin algorithm[7] in terms of average

waiting time, average turnaround time. This algorithm can

be further investigated to be useful in providing more and

more task oriented results in future.

REFERENCES

[1] H.S. Behera, R. Mohanty, Debashree Nayak “A New

Proposed Dynamic Quantum with Readjusted Round Robin

Scheduling Algorithm and its Performance Analysis”,

International Journal of Computer Applications(0975-8887)
Volume 5- No.5, 10-15, August 2010.

[2] Rami J. Matarneh. “Self-Adjustment Time

Quantum in Round Robin Algorithm Depending on Burst

Time of Now Running Processes”, American J. of Applied

Sciences 6(10):1831-1837,2009.

0

50

100

150

200

250

Increasing
order

Decreasing
order

Random
order

DQRRR

RR

TPCS

A
v
g
 T

u
rn

ar
o
u
n

d
 T

im
e

Burst time

0

100

200

300

400

Increasing
order

Decreasing
order

Random
order

DQRRR

RR

TPCS

A
v
g

tu
rn

ar
o
u

n
d

ti
m

e

Burst time

0
50

100
150
200
250
300
350
400
450
500

Increasing
order

Decreasing
order

Random
order

DQRRR

RR

TPCSA
v
g
 w

ai
ti

n
g

T
im

e

Burst time

0

100

200

300

400

500

600

Increasing
order

Decreasing
order

Random
order

DQRRR

RR

TPCSA
v
g
 w

ai
ti

n
g

T
im

e

Burst time

H.S. Behera et al, Journal of Global Research in Computer Science, 2 (4), April 2011

© JGRCS 2010, All Rights Reserved 87

[3] Sanpawat Kantabutra, Parinya Kornpitak, Chengchai

Naramittakapong “Dynamic Clustering-Based Round-Robin
Scheduling Algorithm”. Proceedings of the 3rd international

symposium on communication and information technology

(ISCIT2003) September 03-05,2003, Hatyai, Songkhla,

Thailand.

[4] H.S. Behera, Rakesh Mohanty, Jajnaseni Panda,

Dipanwita Thakur, Subasini Sahoo “Experimental analysis

of a new fair-share scheduling algorithm with waited time

slice for real time systems”. Journal of Global Research in

Computer Science (ISSN-2229-371X), Volume 2, No. 2, 54-

60, February 2011.

[5] H.S. Behera, Simpi Patel, Bijaylaxmi Panda. “A new

dynamic Round-robin and SRTN algorithm using variable

original time slice and dynamic intelligent time slice for soft

real time system”. International Journal of Computer

Applications (0975-8887), Volume 16, No.1, 54-60,

February 2011.

[6] H.S. Behera, Rakesh Mohanty, Sabyasachi Sahu, Sourav

Kumar Bhoi, “Design and performance evaluation of multi

cyclic round robin(MCRR) algorithm using dynamic time

quantum” Journal of global research in computer
science(ISSN-2229-371X), volume 2, No.2, February 2011.

[7] Silberschatz,A.,P.B.GalvinandG.Gange,2004.”Operating

systems concepts”. 7th Edn.,John wiley and Sons, USA.

,ISBN:13:978-0471694663,pp:944.

