
Volume 5, No. 8, August 2014

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 1

A NOVEL GRAPH BASED ALGORITHM FOR ONE DIMENSIONAL BIN

PACKING PROBLEM

Debajit Sensarma
*1

, Samar Sen Sarma
*2

*
1
Department of Computer Science & Engineering, University of Calcutta, Kolkata, West Bengal, India

debajit.sensarma2008@gmail.com
1

*2

 Department of Computer Science & Engineering, University of Calcutta, Kolkata, West Bengal, India

sssarma2001@yahoo.com
2

Abstract: The Bin Packing Problem (BPP) is one of the most known combinatorial optimization problems. The main objective of the problem is to minimize the

number of bins used and pack the items with different sizes in finite number of bins efficiently. This paper introduces a new graph based algorithm for one
dimensional bin packing problem. The proposed algorithm is implemented and tested with the well known benchmark instances and a comparison with existing

First-Fit Decreasing (FFD) algorithm is given with respect to number of bins and waste space. In most of the cases the new algorithm produces near optimal

solutions and performs better than FFD.

Keywords: Graph, Bin Packing Problem, Combinatorial Optimization, Heuristics

1. INTRODUCTION

In one-dimensional Bin Packing Problem, a sequence of

items L = (a1, a2, …, an) is given, each of size S(ai), i=1,.., n and

the goal is to pack them into minimum number of bins with pre

specified capacity C (i.e. partition them into a minimum

number m of subsets B1, B2, …, Bm such that

ji ba

i Cas)(,

1 j m). In the view of constraint satisfaction problem Bin

Packing problem is a problem of partitioning the set L under a

sum constraint i.e. divide L into a minimum number of blocks,

called bins such that the sum of sizes of the items in each bin is

at most a given capacity C>0. There are various real world

applications of bin packing problem e.g. stock cutting problem,

Television programming problem, computer storage allocation

problem, Transportation problem. In many of the problems Bin

Packing has been presented as the primary combinatorial

optimization problem, secondary problem or an embedded

special case. For example, in container loading problem Bin

Packing is embedded.
Bin packing can be defined in several ways. One

classification is based on their dimension. There is one-
dimensional, two-dimensional, three-dimensional and multi-
dimensional Bin packing. On the other hand the problem has
two types of packing, fixed sized Bin packing problem and
variable sized Bin packing problem. In case of the fixed sized,
the bin capacity is fixed and it may not have different capacity.
The objectives are:

i) To minimize the number of bins that will not exceed its
capacity.

ii) To minimize the Waste Space.
iii) To minimize the time of execution.
In case of variable sized packing problem the capacity of

the bins varies. The objective is to pack the items with above
constraints and minimizing the cost associated with the chosen
bins.

The paper is organized as follows. Section 2 gives the
problem formulation. The existing algorithms of Bin Packing
Problem are depicted in section 3. In section 4 the proposed
algorithm is described. The experimental results are given in
section 5 and section 6 concludes the paper.

2. PROBLEM FORMULATION

Given „B‟ identical bins of capacity „C‟ and a list of n items

with sizes a1, a2,…, an to pack and a compatibility graph G (V,

E), where V is the set of size of the items and E is the set of

edges such that (i, j) E if item i and j are compatible (i.e. S

(i) + S (j) V). The problem is to assign items to bins, using a

minimum number of bins, while ensuring that the total size of

the items assigned to a bin does not exceed the bin capacity C

and that two items that are compatible are assigned to the same

bin. The number B is assumed to be large enough to guarantee

feasibility; more precisely it is a valid upper bound on the

number of bins in an optimal solution (note that B n). The

possible integer programming formulation of the problem is:

 Minimize B=

B

k

ky
1

 ……. (i)

Such that,

n

i

ia
1

ikx C iy k=1,…, B …….. (ii)

B

k

ikx
1

 =1 i=1, …, n ……..(iii)

 ikx + jky ky (i, j) E, k=1, …, B ……(iv)

 ky {0, 1} k=1, …, B ….(V)

 ikx {0, 1} i=1,…, n, k=1, …, B ….(vi)

Debajit Sensarma et al, Journal of Global Research in Computer Science, 5 (8), August 2014, 1-4

© JGRCS 2010, All Rights Reserved 2

Where ky =1 if bin k is used, 0 otherwise and ikx =1 if

item i is put into bin k, 0 otherwise.
In the Constraint (i) the objective function is to minimize

the total number of bins and pack all the items with identical

capacity. Constraint (ii) guarantees that the size of items (ia)

filled in the bin k do not exceed the bin capacity. Constraint
(iii) ensures that each item is placed only in one bin. Constraint
(iv) formulate the compatibility.

3. BIN PACKING ALGORITHMS

Bin packing is a NP-Hard problem [1, 2]. Many heuristic and

approximation algorithms have been proposed to reach the

near optimal solution. Mainly the algorithms are online and

offline.

On-line algorithms permanently assign the objects to a bin in

the sequence they arrive. There is an initial condition for all

the on-line heuristics that the first object is already packed bin.

There are various online algorithms. Some of them are:

A. Next Fit Heuristic .

In this algorithm items are placed in the order in which they

arrive. The task is to place the next item as well as it arrives

into the current bin if it fits, otherwise close that bin and start a

new bin.

B. First Fit Heuristic .

In this algorithm items are placed in the order in which they

arrive. As soon as the item arrives, the algorithm places the

item into the lowest numbered bin in which it fits. If the item

does not fit into any open bin, start a new bin.

C. Best Fit Heuristic .

This algorithm place the items in the order in which they

arrive. Place the next item into that bin which will leave

smallest residual capacity after the item is placed in the bin. If

item does not fit in any bin, start a new bin.

D. Worst Fit Heuristic .

This algorithm places the items in the order in which they

arrive and place the next item into that bin which will leave the

largest residual capacity after the item is placed in the bin. If it

does not fit in any bin, start a new bin.

Off-line algorithms have all the objects available before the

packing starts. Two well known off-line algorithms are

described below:

E. First Fit Decreasing Heuristic .

The algorithm first Sort the items in decreasing order then

place the next item into the lowest numbered bin in which it

fits. If it does not fit into any open bin, start a new bin.

F. Best Fit Decreasing Heuristic .

The algorithm first sort the items in decreasing order and place

the next item into that bin which will leave the smallest

residual capacity after the item is placed in the bin. If it does

not fit in any bin, start a new bin.

Besides the development of approximation algorithms for the

classical problem [4], there exist some variants of the problem.

(a) Bin Packing Problem with number of items maximized. [5]

(b) Bin Packing Problem with a bound on number of items can

be packed in each bin. [6] (c) Class constrained Bin Packing

Problem. [8] (d) Dynamic Bin Packing Problem. [7] (e) Bin

Packing with constrained on data. [9, 10] (f) Bin stretching

problem. [11]

4. PROPOSED ALGORITHM

The algorithm proposed here is graph [3] based. It is

designed for offline one dimensional bin packing problem. The

algorithm is a collection of two algorithms. (a) Algorithm B:

Bin Counting and (b) Algorithm C: Construct Compatibility

graph. Algorithm C creates the compatibility graph from the

given set of sizes of the input items and Algorithm B count the

number of bins required. Waste Space per bin is calculated as

difference between total capacity of the bin and sum of sizes of

selected item set. The algorithm finds minimal number of bins

in reasonable amount of time and space. The two algorithms

are depicted below.

Algorithm B: Bin Counting

Input: Compatibility Graph, n= Number of items, deg=

Degree of each item.

Output: B= Number of Bins.

B1: [Initialize] Set i 1, Count 0, B 0;

B2: [Sort items] Sort the input items in non-increasing order

of their sizes.

B3: [Compatibility graph construction] Construct

Compatibility graph and compute degree (deg) of each items.

B4: [Check if (i n)?] If (i n) then goto step B5 else goto

step B20.

B5: [Scan adjacent items] Scan for adjacent items of i.

B6: [Check if ideg =0?] If i contains no adjacent elements,

goto step B17 else goto step B7.

B7: [Check if ideg =1?] If i contains one adjacent element,

goto step B17 else goto step B8.

B8: [Check if Count ideg] If (Count ideg) goto step B9

else goto step B11.

B9: [Item selection] Take the adjacent item with better fitted

in the bin and will left the bin with minimum waste space.

B10: [Increment Count] Count Count+1, goto step B8.

B11: [Check if waste space =0?] If (waste space 0) then

goto step B16 else goto step B12.

Debajit Sensarma et al, Journal of Global Research in Computer Science, 5 (8), August 2014, 1-4

© JGRCS 2010, All Rights Reserved 3

Waste Space (%)

Waste Space (%)

Waste Space (%)

B12: [Compute of all possible sum] Compute all possible sum

of subsets of adjacent elements of i by taking 3, 4,…,q items at

a time and store the items which will left the bin with

minimum Waste Space.

B13: [Check if waste space =0?] If (waste space 0) then

goto step B17 else goto step B14.

B14: [Compare waste space] Compare waste space of step B9

and Step B12.

B15: [Item set selection] Choose the items which will best fit

in the bin and left the bin with minimum waste space.

B16: [Reset Count] Set Count 0.

B17: [Delete item/ item set] If (ideg 0) then delete the

item i else delete the item i and its selected adjacent item/items

from the adjacency list.

B18: [Set B, n] Set B B+1, n n- e /* e number of

item/ items chosen */

B19: [Set i] Set i 1, goto step 4.

B20: [Terminate] Stop.

Algorithm C: Construct Compatibility graph

Input: Array= Set of sizes in non-increasing order, n=

Number of items.

Output: Compatibility graph, deg= Degree of each item.

C1: [Initialize] Set i 1, j 1, deg 0.

C2: [Check if i n?] If (i n) then goto step C3 else goto

step C10.

C3: [Check if j n?] If (j n) then goto step C4 else goto

step C9.

C4: [Check if i j?] If (i j) goto step C5 else goto step C7.

C5: [Check sum of items less than or equal to Capacity?] If

(Array[i] + Array[j] Capacity) then goto step C6 else goto

step C7.

C6: [Connect items] Connect item i and j.

C7: [Increase ideg] ideg ideg +1.

C8: [Reset j] Set j j+1, goto step C3.

C9: [Reset i] Set i i+1, ideg 0, goto step C2.

C10: [Terminate] Stop.

5. EXPERIMENTAL RESULTS

The program is done on Intel® Atom™ Processor, 1.60 GHz,
1.0 GB DDR2 RAM and with Borland C++ 5.5 compiler.

This section evaluates results of FFD algorithm and the
proposed algorithm with respect to i) Number of bins ii) Waste

Space (%) = ((

B

j

jyC
1

) / (C*Number of bins))*100 .

Here jy is sum of sizes of items in bin j, C= capacity of each

bins. The test instances are taken from the OR-library [12]. The
benchmark datasets are divide into three classes; easy, medium
and hard class instances. Table-I contains the results of easy
instances. Out of 5 instances the proposed algorithm produces
optimal solution for all but FFD produces for 3 instances.
Table-II contains results for the medium class instances. Out of
5 instances proposed algorithm produces optimal solution for 4
instances and near optimal solution for 1 instance but FFD
produces optimal solution for only 1 instance. Lastly results of
Hard class instances are shown in Table-III where out of 5
instances proposed algorithm produces near optimal solution
for all 5 instances and which is better than FFD. From the
above three tables its can be seen that the Waste Space (%) of
the proposed algorithm is comparatively less than FFD. Here,
N represents number of items, C represents bin capacity. We
have chosen q= 2, 3, 4, 5.

Table I. Comparative results for easy instances

Instance

(Easy)

N

C

FFD

Propo

sed

method

Minimal

number

of Bins

FFD

Propsed

method

N1C2W4_D 50 120 28 28 28 9.88 9.88

N1C1W1_N 50 120 26 25 25 6.88 3.16

N3C1W1_A 50 100 106 105 105 4.83 3.92

N2C3W2_P 50 150 41 41 41 2.05 2.05

N3C1W4_R 50 100 145 145 145 11.48 11.48

Table II. Comparative results for medium instances

Instance

(Medium)

N

C

FFD

Pro

Posed

metho

d

Mini

mal

num

ber

of

Bins

FFD

Pro

posed

metho

d

N1W1B1_R0

50

1000

20

18

18

15.33

5.92

N1W1B1_R1 50 1000 20 18 18 15.27 5.86

N1W1B1_R7 50 1000 19 17 17 12.69 2.42

N2W1B1_R0 100 1000 37 35 34 11.10 6.02

N3W4B3_R0 200 1000 24 24 24 0.28 0.28

Table III. Comparative results for hard instances

Number of Bins

 Number of Bins

Number of Bins

Debajit Sensarma et al, Journal of Global Research in Computer Science, 5 (8), August 2014, 1-4

© JGRCS 2010, All Rights Reserved 4

Instance

(Hard)

N C FFD Prpo

Sed

method

Minimal

number

of Bins

FFD Proposed

method

Hard0

200

100000

59

56

57

7.79

4.56

Hard1 200 100000 60 58 57 7.68 4.50

Hard2 200 100000 60 58 56 7.40 4.21

Hard3 200 100000 59 57 55 7.77 4.53

Hard4 200 100000 60 58 57 7.48 4.30

6. CONCLUSION

In this paper a heuristic is proposed to tackle one-dimensional

bin packing problem. The proposed algorithm is a graph based

offline algorithm. A compatibility graph is constructed from

the set of item sizes where item sizes are acts as nodes of the

graph and two nodes as connected if they are compatible with

respect to a capacity constraint. Experiment on some problem

instances show the supremacy over existing offline FFD

algorithm with respect to number of bins and total waste

space.

In future we will experiment the proposed algorithm with

other instances and will try to apply the algorithm in real life

problem solving.

ACKNOWLEDGMENT

The authors would like to thank University

Of Calcutta,

West Bengal, India, Department of Science & Technology
(DST), New Delhi, for financial support and the reviewers for
their constructive and helpful comments and specially the
Computer without which no work was possible.

REFERENCES

[1] Garey, Michael R., and David S. Johnson. “Computers
and intractability.” Vol. 29. wh freeman, 2002.

[2] Basu, S. K. “Design methods and analysis of algorithms.”
PHI Learning Pvt. Ltd., 2013.

[3] Deo, Narsingh. “Graph theory with applications to
engineering and computer science.” PHI Learning Pvt.
Ltd., 2004.

[4] Gonzalez, Teofilo F., ed. “Handbook of approximation
algorithms and metaheuristics.” CRC Press, 2007.

[5] Coffman Jr, Edward G., JY-T. Leung, and D. W. Ting.
“Bin packing: maximizing the number of pieces
packed.” Acta Informatica 9.3 (1978): 263-271.

[6] Krause, K. L., V. Y. Shen, and Herbert D. Schwetman.
“Analysis of several task-scheduling algorithms for a
model of multiprogramming computer systems.” Journal
of the ACM (JACM) 22.4 (1975): 522-550.

[7] Coffman, Jr, Edward G., Michael R. Garey, and David S.
Johnson. “Dynamic bin packing.” SIAM Journal on
Computing 12.2 (1983): 227-258.

[8] Shachnai, Hadas, and Tami Tamir. “Tight bounds for
online class-constrained packing.” Theoretical Computer
Science 321.1 (2004): 103-123.

[9] Liu, Wei-Ping, and Jeffrey B. Sidney. “Bin packing using
semi-ordinal data.” Operations Research Letters 19.3
(1996): 101-104.

[10] Mandal, C. A., P. P. Chakrabarti, and S. Ghose.
“Complexity of fragmentable object bin packing and an
application.” Computers & Mathematics with
Applications 35.11 (1998): 91-97.

[11] Azar, Yossi, and Oded Regev. “On-line bin-
stretching.” Theoretical Computer Science 268.1 (2001):
17-41.

[12] http://www.wiwi.uni-jena.de/entscheidung/binpp/

BIODATA

Debajit Sensarma is presently pursuing his PhD degree

from the department of Computer Science and Engineering,

University of Calcutta, Kolkata, India with DST INSPIRE

Fellowship. He has published several papers in International

journals and conferences.

Dr. Samar Sen Sarma is presently working as the

Professor of the department of Computer Science and

Engineering, University Of Calcutta, Kolkata, India. He has

published several papers in International journals and

conferences.

