
Volume 5, No. 8, August 2014 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

© JGRCS 2010, All Rights Reserved   1 

A NOVEL GRAPH BASED ALGORITHM FOR ONE DIMENSIONAL BIN  

PACKING PROBLEM

Debajit Sensarma
*1

, Samar Sen Sarma
*2

 

*
1
Department of Computer Science & Engineering, University of Calcutta, Kolkata, West Bengal, India 

debajit.sensarma2008@gmail.com
1 

 
*2

 Department of Computer Science & Engineering, University of Calcutta, Kolkata, West Bengal, India 

sssarma2001@yahoo.com
2 

 

Abstract: The Bin Packing Problem (BPP) is one of the most known combinatorial optimization problems. The main objective of the problem is to minimize the 

number of bins used and pack the items with different sizes in finite number of bins efficiently. This paper introduces a new graph based algorithm for one 
dimensional bin packing problem. The proposed algorithm is implemented and tested with the well known benchmark instances and a comparison with existing 

First-Fit Decreasing (FFD) algorithm is given with respect to number of bins and waste space. In most of the cases the new algorithm produces near optimal 

solutions and performs better than FFD. 
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1. INTRODUCTION  

In one-dimensional Bin Packing Problem, a sequence of 

items L = (a1, a2, …, an) is given, each of size S(ai), i=1,.., n and 

the goal is to pack them into minimum number of bins with pre 

specified capacity C (i.e. partition them into a minimum 

number m of subsets B1, B2, …, Bm such that 

ji ba

i Cas )( , 

1  j  m). In the view of constraint satisfaction problem Bin 

Packing problem is a problem of partitioning the set L under a 

sum constraint i.e. divide L into a minimum number of blocks, 

called bins such that the sum of sizes of the items in each bin is 

at most a given capacity C>0. There are various real world 

applications of bin packing problem e.g. stock cutting problem, 

Television programming problem, computer storage allocation 

problem, Transportation problem. In many of the problems Bin 

Packing has been presented as the primary combinatorial 

optimization problem, secondary problem or an embedded 

special case. For example, in container loading problem Bin 

Packing is embedded.  
Bin packing can be defined in several ways. One 

classification is based on their dimension. There is one-
dimensional, two-dimensional, three-dimensional and multi-
dimensional Bin packing. On the other hand the problem has   
two types of packing, fixed sized Bin packing problem and 
variable sized Bin packing problem. In case of the fixed sized, 
the bin capacity is fixed and it may not have different capacity. 
The objectives are:  

i)  To minimize the number of bins that will not exceed its 
capacity.  

ii)  To minimize the Waste Space.  
iii)  To minimize the time of execution.  
In case of variable sized packing problem the capacity of 

the bins varies. The objective is to pack the items with above 
constraints and minimizing the cost associated with the chosen 
bins.  

The paper is organized as follows. Section 2 gives the 
problem formulation. The existing algorithms of Bin Packing 
Problem are depicted in section 3. In section 4 the proposed 
algorithm is described. The experimental results are given in 
section 5 and section 6 concludes the paper. 

2. PROBLEM FORMULATION 

Given „B‟ identical bins of capacity „C‟ and a list of n items 

with sizes a1, a2,…, an to pack and a compatibility graph G (V, 

E), where V is the set of size of the items and E is the set of 

edges such that (i, j) E if item i and j are compatible (i.e. S 

(i) + S (j) V). The problem is to assign items to bins, using a 

minimum number of bins, while ensuring that the total size of 

the items assigned to a bin does not exceed the bin capacity C 

and that two items that are compatible are assigned to the same 

bin. The number B is assumed to be large enough to guarantee 

feasibility; more precisely it is a valid upper bound on the 

number of bins in an optimal solution (note that B  n). The 

possible integer programming formulation of the problem is: 

 

  Minimize B=

B

k

ky
1

            ……. (i) 

Such that, 

n

i

ia
1

ikx  C iy        k=1,…, B      …….. (ii) 

               

B

k

ikx
1

 =1   i=1, …, n      ……..(iii)

 ikx + jky ky   (i, j)  E, k=1, …, B    ……(iv) 

  

 ky {0, 1}        k=1, …, B                 ….(V)  

 ikx  {0, 1}     i=1,…, n, k=1, …, B     ….(vi) 
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Where ky =1 if bin k is used, 0 otherwise and ikx =1 if 

item i is put into bin k, 0 otherwise. 
In the Constraint (i) the objective function is to minimize 

the total number of bins and pack all the items with identical 

capacity. Constraint (ii) guarantees that the size of items ( ia ) 

filled in the bin k do not exceed the bin capacity. Constraint 
(iii) ensures that each item is placed only in one bin. Constraint 
(iv) formulate the compatibility. 

 

3. BIN PACKING ALGORITHMS 

Bin packing is a NP-Hard problem [1, 2]. Many heuristic and 

approximation algorithms have been proposed to reach the 

near optimal solution. Mainly the algorithms are online and 

offline.  

On-line algorithms permanently assign the objects to a bin in 

the sequence they arrive. There is an initial condition for all 

the on-line heuristics that the first object is already packed bin. 

There are various online algorithms. Some of them are: 

A. Next Fit Heuristic .  

In this algorithm items are placed in the order in which they 

arrive. The task is to place the next item as well as it arrives 

into the current bin if it fits, otherwise close that bin and start a 

new bin. 

 

B. First Fit Heuristic .  

In this algorithm items are placed in the order in which they 

arrive. As soon as the item arrives, the algorithm places the 

item into the lowest numbered bin in which it fits. If the item 

does not fit into any open bin, start a new bin. 

 

C. Best Fit Heuristic .  

This algorithm place the items in the order in which they 

arrive. Place the next item into that bin which will leave 

smallest residual capacity after the item is placed in the bin. If 

item does not fit in any bin, start a new bin. 

 

D. Worst Fit Heuristic .  

This algorithm places the items in the order in which they 

arrive and place the next item into that bin which will leave the 

largest residual capacity after the item is placed in the bin. If it 

does not fit in any bin, start a new bin. 

 

Off-line algorithms have all the objects available before the 

packing starts. Two well known off-line algorithms are 

described below: 

 

E. First Fit Decreasing Heuristic .  

The algorithm first Sort the items in decreasing order then 

place the next item into the lowest numbered bin in which it 

fits. If it does not fit into any open bin, start a new bin. 

 

F. Best Fit Decreasing Heuristic .  

The algorithm first sort the items in decreasing order and place 

the next item into that bin which will leave the smallest 

residual capacity after the item is placed in the bin. If it does 

not fit in any bin, start a new bin. 

 

Besides the development of approximation algorithms for the 

classical problem [4], there exist some variants of the problem. 

(a) Bin Packing Problem with number of items maximized. [5] 

(b) Bin Packing Problem with a bound on number of items can 

be packed in each bin. [6] (c) Class constrained Bin Packing 

Problem. [8] (d) Dynamic Bin Packing Problem. [7] (e) Bin 

Packing with constrained on data. [9, 10] (f) Bin stretching 

problem. [11]  

4. PROPOSED ALGORITHM  

The algorithm proposed here is graph [3] based. It is 

designed for offline one dimensional bin packing problem. The 

algorithm is a collection of two algorithms. (a) Algorithm B: 

Bin Counting and (b) Algorithm C: Construct Compatibility 

graph. Algorithm C creates the compatibility graph from the 

given set of sizes of the input items and Algorithm B count the 

number of bins required. Waste Space per bin is calculated as 

difference between total capacity of the bin and sum of sizes of 

selected item set. The algorithm finds minimal number of bins 

in reasonable amount of time and space. The two algorithms 

are depicted below.    

  

Algorithm B:  Bin Counting 

     

Input: Compatibility Graph, n= Number of items, deg= 

Degree of each item. 

 

Output: B= Number of Bins. 

  

B1: [Initialize] Set i 1, Count 0, B  0; 

 

B2: [Sort items] Sort the input items in non-increasing order 

of their sizes. 

 

B3: [Compatibility graph construction] Construct 

Compatibility graph and compute degree (deg) of each items. 

 

B4: [Check if (i n)?] If (i n) then goto step B5 else goto 

step B20.  

 

B5: [Scan adjacent items] Scan for adjacent items of i. 

 

B6: [Check if ideg =0?] If i contains no adjacent elements, 

goto step B17 else goto step B7. 

 

B7: [Check if ideg =1?] If i contains one adjacent element, 

goto step B17 else goto step B8. 

 

B8: [Check if Count ideg ] If (Count ideg ) goto step B9 

else goto step B11. 

 

B9: [Item selection] Take the adjacent item with better fitted 

in the bin and will left the bin with minimum waste space. 

 

B10: [Increment Count] Count   Count+1, goto step B8. 

 

B11: [Check if waste space =0?] If (waste space 0) then 

goto step B16 else goto step B12. 
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Waste Space (%) 

Waste Space (%) 

Waste Space (%) 

B12: [Compute of all possible sum] Compute all possible sum 

of subsets of adjacent elements of i by taking 3, 4,…,q items at 

a time and store the  items which will  left the bin with 

minimum Waste Space. 

 

B13: [Check if waste space =0?] If (waste space  0) then 

goto step B17 else goto step B14. 

 

B14: [Compare waste space] Compare waste space of step B9 

and Step B12. 

 

B15: [Item set selection] Choose the items which will best fit 

in the bin and left the bin with minimum waste space. 

 

B16: [Reset Count] Set Count  0. 

 

B17: [Delete item/ item set] If ( ideg  0) then delete the 

item i else delete the item i and its selected adjacent item/items 

from the adjacency list. 

 

B18: [Set B, n] Set B B+1, n n- e    /* e number of 

item/ items chosen */   

 

B19: [Set i] Set i 1, goto step 4.  

 

B20: [Terminate] Stop. 

 

Algorithm C: Construct Compatibility graph 

 

Input: Array= Set of sizes in non-increasing order, n= 

Number of items. 

 

Output: Compatibility graph, deg= Degree of each item.  

 

C1: [Initialize] Set i 1, j 1, deg 0. 

 

C2: [Check if i  n?] If ( i n) then goto step C3 else goto 

step C10. 

 

C3: [Check if j n?] If (j  n) then goto step C4 else goto 

step C9. 

 

C4: [Check if i j?] If ( i j ) goto step C5 else goto step C7. 

 

C5: [Check sum of items less than or equal to Capacity?] If 

(Array[i] + Array[j] Capacity) then goto step C6 else goto 

step C7. 

 

C6: [Connect items] Connect item i and j. 

 

C7: [Increase ideg ] ideg ideg +1. 

 

C8: [Reset j] Set j  j+1, goto step C3. 

 

C9: [Reset i] Set i  i+1, ideg  0, goto step C2. 

 

C10: [Terminate] Stop. 

 

5. EXPERIMENTAL RESULTS 

The program is done on Intel® Atom™ Processor, 1.60 GHz, 
1.0 GB DDR2 RAM and with Borland C++ 5.5 compiler. 
  

This section evaluates results of FFD algorithm and the 
proposed algorithm with respect to i) Number of bins ii) Waste 

Space (%) = (( 

B

j

jyC
1

) / (C*Number of bins))*100 . 

Here jy  is sum of sizes of items in bin j, C= capacity of each 

bins. The test instances are taken from the OR-library [12]. The 
benchmark datasets are divide into three classes; easy, medium 
and hard class instances. Table-I contains the results of easy 
instances. Out of 5 instances the proposed algorithm produces 
optimal solution for all but FFD produces for 3 instances. 
Table-II contains results for the medium class instances. Out of 
5 instances proposed algorithm produces optimal solution for 4 
instances and near optimal solution for 1 instance but FFD 
produces optimal solution for only 1 instance. Lastly results of 
Hard class instances are shown in Table-III where out of 5 
instances proposed algorithm produces near optimal solution 
for all 5 instances and which is better than FFD. From the 
above three tables its can be seen that the Waste Space (%) of 
the proposed algorithm is comparatively less than FFD. Here, 
N represents number of items, C represents bin capacity. We 
have chosen q= 2, 3, 4, 5. 

 
 

Table I.  Comparative results for easy instances 

          

  

 

 

Instance 

(Easy) 

 

N 

 

C 

 

FFD 

 

Propo 

sed 

method 

 

Minimal 

number 

of Bins 

 

FFD 

 

Propsed 

method 

N1C2W4_D 50 120 28 28 28 9.88 9.88 

N1C1W1_N 50 120 26 25 25 6.88 3.16 

N3C1W1_A 50 100 106 105 105 4.83 3.92 

N2C3W2_P 50 150 41 41 41 2.05 2.05 

N3C1W4_R 50 100 145 145 145 11.48 11.48 

 

Table II.  Comparative results for medium instances 

          
  

 

 

Instance 

(Medium) 

 

N 

 

C 

 

FFD 

 

Pro 

Posed 

metho

d 

Mini

mal 

num

ber 

of 

Bins 

 

FFD 

 

Pro 

posed 

metho

d 

 

  

N1W1B1_R0 

 

50 

 

1000 

 

20 
 

18 

 

18 

 

15.33 

 

5.92 

N1W1B1_R1 50 1000 20 18 18 15.27 5.86 

N1W1B1_R7 50 1000 19 17 17 12.69 2.42 

N2W1B1_R0 100 1000 37 35 34 11.10 6.02 

N3W4B3_R0 200 1000 24 24 24 0.28 0.28 

 

Table III. Comparative results for hard instances 

          

  

 

        

Number of Bins 

  Number of Bins 

Number of Bins 
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Instance 

(Hard) 

N C FFD Prpo 

Sed 

method 

Minimal 

number 

of Bins 

FFD Proposed 

method 

 

Hard0 

 
200 

 
100000 

 
59 

 
56 

 
57 

 
7.79 

 
4.56 

Hard1 200 100000 60 58 57 7.68 4.50 

Hard2 200 100000 60 58 56 7.40 4.21 

Hard3 200 100000 59 57 55 7.77 4.53 

Hard4 200 100000 60 58 57 7.48 4.30 

6. CONCLUSION 

In this paper a heuristic is proposed to tackle one-dimensional 

bin packing problem. The proposed algorithm is a graph based 

offline algorithm. A compatibility graph is constructed from 

the set of item sizes where item sizes are acts as nodes of the 

graph and two nodes as connected if they are compatible with 

respect to a capacity constraint. Experiment on some problem 

instances show the supremacy over existing offline FFD 

algorithm with respect to number of bins and total waste 

space.       

In future we will experiment the proposed algorithm with 

other instances and will try to apply the algorithm in real life 

problem solving. 
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