
Volume 4, No. 7, July 2013

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved

 43

A SHORT SURVEY OF DATA COMPRESSION TECHNIQUES FOR

COLUMN ORIENTED DATABASES

Priyanka Raichand* and Rinkle Rani Aggarwal
Department of Computer Science and Engineering

Thapar University, Patiala

raichand.priyanka@gmail.com, raggarwal@thapar.edu

Abstract: Column oriented data-stores has all values of a single column are stored as a row followed by all values of the next column.

Such way of storing records helps in data compression since values of the same column are of the similar type and may repeat. This

Paper surveys the various data compression techniques in column oriented databases. Data compression is efficiently used to save

storage space and network bandwidth. It improves the performance of query execution. Specialized algorithms based on the type of the

data stored in column results in immense improvements in compression ratios. Higher-up ratios result in more efficient bandwidth

usage.

Keywords: Compression, Column oriented databases, Decompression, NoSQL, HBase

INTRODUCTION

Data size in data-stores have been ever increasing due to

increased networking and business demands and thus

increasing cost of resources needed in terms of space and

network utilization. To store terabytes of data, especially of

the type human-readable text, it is beneficial to compress

the data to gain significant savings in required raw storage.

Compression techniques have not been considerably used

in traditional relational database systems. The exchange

between time and space for compression is not much

pleasing for relational databases. Whereas storing data in

columns introduce a number of possibilities for better

performance from compression algorithms. Column-

oriented databases save the data by grouping in columns.

Later column values are stored consecutively on disk in

contrast to row-oriented approach of databases which store

entire rows contiguously [1].

 HBase is one of the most prominent NoSQL column

oriented data- store. In this paper, we have introduced

compression techniques in the context of column oriented

database systems. In the next section, we briefly layout

related work. In Section 3, we identify various data

compressing techniques well suited for column oriented

data-stores. Section 4 briefly indicates the Compression

schemes that can be used in HBase. We offer our

conclusions in Section 5.

RELATED WORK

 Research in database compression has been approximately

for nearly a century though compression techniques were

not frequently used until 1990’s [2]. It's only today that

these are being put to use inside important information

systems. It may be so because earlier most of the was

focused on cutting down the size of the stored data, but in

90's researchers started to concentrate on affects of

compression on databases performance [10, 11, 13, 12].

Few researchers have investigated the effect of

compression on database systems and their performance

[14, 15, 13]. These Research work have discovered that

compression does reduce I/O cost but if the cost of for

compressing/decompressing outbalance this saved cost,

then it results in reduced overall performance of the

database. This trade-off becomes more favourable for

compression with the improvements in CPU speed [20].

Many researchers have chew over text compression

schemes such as Huffman encoding that is based on letter

frequency. String matching schemes are being looked by

more recent research in compression [16, 17, 18, 19].

 Along with these traditional techniques, column oriented

databases are also substantially best for compression

schemes that compress data from more than one row at a

time thus allowing many great kind of workable

compression algorithms. For example, for compressing

sorted data in a column oriented database, run-length

encoding (RLE), where repeats of the same element are

expressed as (value, run-length) pairs, is a pleasing

technique [2]. We can see generally higher compression

ratios in column oriented datastores because consecutive

values of the same column are of the similar type and may

repeat, whereas adjacent attributes in a tuple are not [21].

The overhead incurred by CPU for iterating through a page

of column values (particularly when all column values are

the same size) tends to be less. Column oriented databases

can store different columns in unlike sort-orders [22],

further enhancing the possibility for compression. Column

oriented compression techniques also improve CPU

performance by allowing operations directly on

compressed data. This is particularly true for compression

schemes like run length encoding that refer to multiple

entries with the same value in a single record [2].

 COMPRESSION SCHEMES FOR COLUMN ORIENTED

DATABASES

This section concisely describes various compression

Priyanka Raichand et al, Journal of Global Research in Computer Science, 4 (7), July 2013, 43-46

© JGRCS 2010, All Rights Reserved

 44

schemes for Column oriented databases. For each scheme,

we firstly present a brief description of the traditional

version of the scheme as previously used in row oriented

database systems and later in regard with column oriented

databases [4].

Dictionary Encoding

Today’s database systems perhaps Dictionary encoding

schemes are most dominant types of compression schemes.

These schemes replace frequent patterns with smaller

codes. A column-optimized variant of dictionary encoding

is new Implementation. Row oriented datastores are

basically not capable of blending attributes from more than

one tuple in a single entry thus making dictionary encoding

schemes not to function fully as they can only map

attribute values from a single tuple to dictionary entries.

1) Dictionary Encoding Algorithm: Dictionary

encoding algorithm [4] calculates the number of bits, X,

needed to encode a single attribute of the column (which

can be calculated directly from the number of unique

values of the attribute). It then calculates how many of

these X-bit encoded values can fit in 1, 2, 3, or 4 bytes. For

example,[4] if an attribute has 32 values, it can be encoded

in 5 bits, so 1 of these values can fit in 1 byte, 3 in 2 bytes,

4 in 3 bytes, or 6 in 4 bytes. Suppose that the 3-value/2-

byte option was chosen. In that case, a mapping is created

between every possible set of 3 5-bit values and the

original 3 values. For example, if the value 1 is encoded by

the 5 bits: 00000; the value 25 is encoded by the 5 bits:

00001 and the value 31 is encoded by the 5 bits 00010;

then the dictionary would have the entry (read entries

right-to-left)

X000000000100010 -> 31 25 1

Where X indicates an unused ―wasted‖ bit. The decoding

algorithm for this example is then straightforward: read in

2-bytes and lookup entry in dictionary to get 3 values back

at once. Column oriented databases are quite I/O efficient

that queries on the column become CPU limited after

applying even small amount of compression[6]. So the I/O

savings that one get by not wasting the extra space is

unimportant. Thus, it is worth byte-aligning dictionary

entries to obtain even modest CPU savings [2].

2) Cache-Conscious Optimization [4][5]: The decision

as to whether values should be packed into 1, 2, 3, or 4

bytes is decided by requiring the dictionary to fit in the L2

cache. In the above example, we fit each entry into 2 bytes

and the number of dictionary entries is 323 = 32768.

Therefore the size of the dictionary is 393216 bytes which

is less than half of the L2 cache on our machine (1MB).

Note that for cache sizes on current architectures, the 1 or

2 byte options will be used exclusively.

Run Length Encoding

 Run Length Encoding (RLE) is a simple and popular

data compression algorithm. Run-length encoding

compresses [2] based on the idea of replacing the same

long sequence in a column to a compact singular

representation. Thus, it is well-suited for columns that are

sorted or that have reasonable-sized runs of the same

value. These runs are replaced with triples: (value, start

position, run length) where each element of the triple is

given a fixed number of bits. In row-oriented systems,

RLE is only used for large string attributes that have

many blanks or repeated characters. But in column

oriented RLE can be much more greatly used systems

where attributes are stored consecutively and runs of the

same value are common (mainly in columns that have

less distinct values).

Null Suppression

Null compression scheme has many variants but the basic

logic is to replace consecutive zeros or blanks in the data

are deleted and replaced with a description of how many

there were and where they existed [2]. Naturally, this

technique works great on data sets where zeros or blanks

appear frequently. Variable field sizes are encoded in the

number of bytes needed to store each field in a field prefix.

This allows us to exclude heading nulls needed to pad the

data to a fixed size. For example, [2] for integer types,

rather than using the full 4 bytes to store the integer, we

encoded the exact number of bytes needed using two bits

(1, 2, 3, or4 bytes) and placed these two bits as prefix of

the integer.

 Lempel-Ziv Encoding

 The Lempel-Ziv compression algorithms were developed

in 1977-78. Lempel-Ziv [7, 8] compression is the most

widely used technique for lossless file compression. The

UNIX command gzip is based upon this algorithm only.

Lempel-Ziv replaces variable sized patterns with fixed

length codes unlike to Huffman encoding which produces

variable sized codes. In Lempel-Ziv encoding knowledge

about pattern frequencies in advance is not an requirement

as it builds the pattern table dynamically as it encodes

the data. The main idea is to analyse the input sequence

into non-overlapping blocks of different lengths and

constructing a dictionary of blocks seen thus far. Later on

occurrences of these blocks are replaced by a pointer to an

earlier occurrence of the same block.

 Hybrid Columnar Compression

Generally, database table rows are stored in blocks.

Typically, a row is fully contained in a block, and the

columns of the row stored next to each other [9]. But too

large rows can't fit in a block so results in spanning of the

row to next block known as row chaining—but there is no

change in the organization of the columns being stored

next to each other. This compression mechanism replaces a

value in a row with a much smaller symbol, thus reducing

the length of the row. A great deal of compression can be

achieved by replacing the repeated value with a much

smaller symbol. In Hybrid Columnar Compression, we get

a column vector for each column, compress the column

vectors, and store the column vectors in data blocks. This

collection of data blocks is known a compression unit. The

blocks in a compression unit contain all the columns for a

set of rows as shown in the Fig 1.

Priyanka Raichand et al, Journal of Global Research in Computer Science, 4 (7), July 2013, 43-46

© JGRCS 2010, All Rights Reserved

 45

 Fig 1. Compression Unit in hybrid columnar compression

COMPRESSION SCHEMES IN HBASE

HBase is the Hadoop database. It is a distributed, scalable

Big Data store. We can use HBase in random, real-time

read/write access to our Big Data. An open-source follow

up of BigTable, HBase uses a data model very similar to

that of BigTable. A data row in HBase is a sortable row

key and a variable number of columns, which are further

grouped into sets called column families. Each data cell in

HBase can contain multiple versions of the same data

which are indexed by timestamps. Fig. 2(a) represents an

HBase table here as a sorted map in contrast to relational

databases whose data is usually represented as a table form.

Data cell in the table can be viewed as a key value pair

where the key is a combination of row key, column and

timestamp; and the value is an uninterpreted array of bytes

Fig. 2(b).

Fig 2. HBase data model [3]

One of the most important features of HBase is the use of

data compression. It's important because [1]:

1. Compression reduces the number of bytes written

to/read from HDFS.

2. Saves disk usage.

3. Improves the efficiency of network bandwidth when

getting data from a remote server.

HBase comes with support for a number of compression

algorithms that can be enabled at the column family level.

 1) Available Codec : HBase supports the GZip and LZO,

Snappy codec. Before moving ahead on the details of these

codecs lets to see the compression algorithm comparison

Google published in 2005

Table1. Comparison of compression algorithms

We can see from Table 1 that some of the algorithms have

a better compression ratio while others are faster during

encoding and a lot faster during decoding [1].

Snappy: With Snappy, released by Google under the BSD

License, we got access to the same compression used by

Bigtable (Zippy). It behaves perfectly to provide high speeds

and reasonable compression. The code is written in C++.

 LZO: Lempel-Ziv-Oberhumer (LZO) is a lossless data

compression algorithm. It is focused on decompression speed,

and written in ANSI C. HBase is not shiped with LZO

because of licensing issues: HBase uses the Apache License,

while LZO is using the incompatible GNU General Public

License (GPL). By adding LZO compression support, HBase

StoreFiles (Hfiles) uses LZO compression on blocks as they

are written. HBase uses the native LZO library to perform the

compression, while the native library is loaded by HBase via

the hadoop-lzo Java library that we built [1].

GZIP: The GZIP compression algorithm compresses better

than Snappy or LZO, but is slower in comparison. It comes

with an additional savings in storage space.

CONCLUSIONS

In this paper, we have outlined few fairly simple

techniques to achieve database performance improvements

by data compression. These techniques not only reduce

space requirements on disk and I/O performance when

measured in records per time for permanent and temporary

data, they also reduce requirements of memory, thus

reducing the number of buffer faults resulting in I/O.

column oriented are well suited to compression schemes

that compress values from more than one row at a time.

Compression schemes also improve CPU performance by

allowing database operators to operate directly on

compressed data. Various compression codecs are

available to be used with HBase, including LZO, Snappy

and GZIP. In HBase Compression codecs work best if they

Priyanka Raichand et al, Journal of Global Research in Computer Science, 4 (7), July 2013, 43-46

© JGRCS 2010, All Rights Reserved

 46

can decide how much data is enough to achieve an

efficient compression ratio. HFiles can be compressed and

stored on HDFS. This helps by saving on disk I/O and

instead paying with a higher CPU utilization for

compression and decompression while writing/reading

data. LZO and Snappy have comparable compression

ratios and encoding/decoding speeds.

REFERENCES

[1] (Book) ―HBase: The Definitive Guide‖ (2nd edition). Lars

George. O'Reilly Media, Inc., 2011.

[2] D. J. Abadi, S. R. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database systems.

In SIGMOD,

[3] Chongxin Li. ―Transforming Relational database into

HBase- A Case Study‖.

[4] D. J. Abadi. Query execution in column-oriented database

systems. MIT PhD Dissertation, 2008. PhD Thesis

[5] M. Zukowski, P. A. Boncz, N. Nes, and S. Heman.

MonetDB/X100 - A DBMS In The CPU Cache. IEEE Data

Engineering Bulletin, 28(2):17–22, June 2005.

[6] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-

scalar ram-cpu cache compression. In ICDE, 2006.

[7] J. Ziv and A. Lempel. A universal algorithm for sequential

data compression. IEEE Transactions on Information Theory,

23(3):337–343, 1977.

[8] J. Ziv and A. Lempel. Compression of individual sequences

via variable-rate coding. IEEE Transactionson Information

Theory, 24(5):530–536, 1978.

[9] Oracle 11g Data Compression Tips for the Database

Administrator Oracle 11g Tips by Burleson Consulting.

[10] G.Graefe and L.Shapiro. Data compression and database

performance. In ACM/IEEE-CS Symp. On Applied computing

pages 22 -27, April 1991.

[11] B. R. Iyer and D. Wilhite. Data compression support in

databases. In VLDB ’94, pages 695–704, 1994.

[12] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing

relations and indexes. In ICDE ’98, pages 370–379, 1998.

[13] G. Ray, J. R. Haritsa, and S. Seshadri. Database

compression: A performance enhancement tool. In COMAD,

1995.

[14] C. A. Lynch and E. B. Brownrigg. Application of data

compression to a large bibliographic data base. In VLDB ’81,

Cannes, France, pages 435–447, 1981.

[15] P. O’Neil and D. Quass. Improved query performance with

variant indexes. In SIGMOD, pages 38–49, 1997.

[16] A. Moffat and J. Zobel. Compression and fast indexing for

multi-gigabyte text databases. Australian Computer Journal,

26(1):1–9, 1994.

[17] K. Wu, E. Otoo, and A. Shoshani. Compressed bitmap

indices for efficient query processing. Technical Report LBNL-

47807, 2001.

[18] K. Wu, E. Otoo, A. Shoshani, and H. Nordberg. Notes on

design and implementation of compressed bit vectors. Technical

Report LBNL/PUB-3161, 2001.

[19] A. Zandi, B. R. Iyer, and G. G. Langdon Jr. Sort order

preserving data compression for extended alphabets. In Data

Compression Conference, pages 330–339, 1993.

[20] P. Boncz, S. Manegold, and M. Kersten. Database

architecture optimized for the new bottleneck: Memory access. In

VLDB, pages 54–65, 1999.

[21] R. MacNicol and B. French. Sybase IQ multiplex -

designed for analytics. In VLDB, pages 1227–1230, 2004.

[22] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M.

Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil,

P. E. O’Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A

column-oriented DBMS. In VLDB, pages 553–564, 2005.

