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Abstract:  Column oriented data-stores has all values of a single column are stored as a row followed by all values of the next column. 

Such way of storing records helps in data compression since values of the same column are of the similar type and may repeat. This 

Paper surveys the various data compression techniques in column oriented databases. Data compression is efficiently used to save 

storage space and network bandwidth. It improves the performance of query execution. Specialized algorithms based on the type of the 

data stored in column results in immense improvements in compression ratios. Higher-up ratios result in more efficient bandwidth 

usage. 
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INTRODUCTION 

 

Data size in data-stores have been ever increasing due to 

increased networking and business demands and thus 

increasing cost of resources needed in terms of space and 

network utilization. To store terabytes of data, especially of 

the type human-readable text, it is beneficial to compress 

the data to gain significant savings in required raw storage. 

Compression techniques have not been considerably used 

in traditional relational database systems. The exchange 

between time and space for compression is not much 

pleasing for relational databases. Whereas storing data in 

columns introduce a number of possibilities for better 

performance from compression algorithms. Column- 

oriented databases save the data by grouping in columns. 

Later column values are stored consecutively on disk in 

contrast to row-oriented approach of databases which store 

entire rows contiguously [1]. 

 

 HBase is one of the most prominent NoSQL column 

oriented data- store. In this paper, we have introduced 

compression techniques in the context of column oriented 

database systems. In the next section, we briefly layout 

related work. In Section 3, we identify various data 

compressing techniques well suited for column oriented 

data-stores. Section 4 briefly indicates the Compression 

schemes that can be used in HBase. We offer our 

conclusions in Section 5. 

 

RELATED WORK 

 

 Research in database compression has been approximately 

for nearly a century though compression techniques were 

not frequently used until 1990’s [2]. It's only today that 

these are being put to use inside important information 

systems.  It may be so because earlier most of the was 

focused on cutting down the size of the stored data, but in 

90's researchers started to concentrate on affects of 

compression on databases performance  [10, 11, 13, 12]. 

Few researchers have investigated the effect of 

compression on database systems and their performance 

[14, 15, 13]. These Research work have discovered that 

compression does reduce I/O cost but if the cost of for 

compressing/decompressing outbalance this saved cost, 

then it results in reduced overall performance of the 

database. This trade-off becomes more favourable for 

compression with the improvements in CPU speed [20]. 

Many researchers have chew over text compression 

schemes such as Huffman encoding that is based on letter 

frequency. String matching schemes are being looked by 

more recent research in compression [16, 17, 18, 19]. 

 

 Along with these traditional techniques, column oriented 

databases are also  substantially best for compression 

schemes that compress data from more than one row at a 

time thus allowing many great kind of workable 

compression algorithms. For example, for compressing 

sorted data in a column oriented database, run-length 

encoding (RLE), where repeats of the same element are 

expressed as (value, run-length) pairs, is a pleasing 

technique [2]. We can see generally higher compression 

ratios in column oriented datastores because consecutive 

values of the same column are of the similar type and may 

repeat, whereas adjacent attributes in a tuple are not [21]. 

The overhead incurred by CPU for iterating through a page 

of column values (particularly when all column values are 

the same size) tends to be less. Column oriented databases 

can store different columns in unlike sort-orders [22], 

further enhancing the possibility for compression. Column 

oriented compression techniques also improve CPU 

performance by allowing operations directly on 

compressed data. This is particularly true for compression 

schemes like run length encoding that refer to multiple 

entries with the same value in a single record [2]. 

 

 COMPRESSION SCHEMES FOR COLUMN ORIENTED 

DATABASES  

 

This section concisely describes various compression 
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schemes for Column oriented databases. For each scheme, 

we firstly present a brief description of the traditional 

version of the scheme as previously used in row oriented 

database systems and later in regard with column oriented 

databases [4]. 

 

Dictionary Encoding 

 

Today’s database systems perhaps Dictionary encoding 

schemes are most dominant types of compression schemes. 

These schemes replace frequent patterns with smaller 

codes. A column-optimized variant of dictionary encoding 

is new Implementation. Row oriented datastores are 

basically not capable of blending attributes from more than 

one tuple in a single entry thus making dictionary encoding 

schemes not to function fully as they can only map 

attribute values from a single tuple to dictionary entries. 

 

1)  Dictionary Encoding Algorithm:  Dictionary 

encoding algorithm [4] calculates the number of bits, X, 

needed to encode a single attribute of the column (which 

can be calculated directly from the number of unique 

values of the attribute). It then calculates how many of 

these X-bit encoded values can fit in 1, 2, 3, or 4 bytes. For 

example,[4] if an attribute has 32 values, it can be encoded 

in 5 bits, so 1 of these values can fit in 1 byte, 3 in 2 bytes, 

4 in 3 bytes, or 6 in 4 bytes. Suppose that the 3-value/2-

byte option was chosen. In that case, a mapping is created 

between every possible set of 3 5-bit values and the 

original 3 values. For example, if the value 1 is encoded by 

the 5 bits: 00000; the value 25 is encoded by the 5 bits: 

00001 and the value 31 is encoded by the 5 bits 00010; 

then the dictionary would have the entry (read entries 

right-to-left) 

X000000000100010 -> 31 25 1 

Where X indicates an unused ―wasted‖ bit. The decoding 

algorithm for this example is then straightforward: read in 

2-bytes and lookup entry in dictionary to get 3 values back 

at once. Column oriented databases are quite I/O efficient 

that queries on the column become CPU limited after 

applying even small amount of compression[6]. So the I/O 

savings that one get by not wasting the extra space is 

unimportant. Thus, it is worth byte-aligning dictionary 

entries to obtain even modest CPU savings [2]. 

 

2)  Cache-Conscious Optimization [4][5]:  The decision 

as to whether values should be packed into 1, 2, 3, or 4 

bytes is decided by requiring the dictionary to fit in the L2 

cache. In the above example, we fit each entry into 2 bytes 

and the number of dictionary entries is 323 = 32768. 

Therefore the size of the dictionary is 393216 bytes which 

is less than half of the L2 cache on our machine (1MB). 

Note that for cache sizes on current architectures, the 1 or 

2 byte options will be used exclusively. 

 

Run Length Encoding 

 

     Run Length Encoding (RLE) is a simple and popular 

data compression algorithm. Run-length encoding 

compresses [2] based on the idea of replacing the same 

long sequence in a column to a compact singular 

representation. Thus, it is well-suited for columns that are 

sorted or that have reasonable-sized runs of the same 

value. These runs are replaced with triples: (value, start 

position, run length) where each element of the triple is 

given a fixed number of bits. In row-oriented systems, 

RLE is only used for large string attributes that have 

many blanks or repeated characters. But in  column 

oriented RLE can be much more greatly used systems 

where attributes are stored consecutively and runs of the 

same value are common (mainly in columns that have 

less distinct values). 

 

Null Suppression 

     

Null compression scheme has many variants but the basic 

logic is to replace consecutive zeros or blanks in the data 

are deleted and replaced with a description of how many 

there were and where they existed [2]. Naturally, this 

technique works great on data sets where zeros or blanks 

appear frequently. Variable field sizes are encoded in the 

number of bytes needed to store each field in a field prefix. 

This allows us to exclude heading nulls needed to pad the 

data to a fixed size. For example, [2] for integer types, 

rather than using the full 4 bytes to store the integer, we 

encoded the exact number of bytes needed using two bits 

(1, 2, 3, or4 bytes) and placed these two bits as prefix of 

the integer. 

 

 Lempel-Ziv Encoding 

 

 The Lempel-Ziv compression algorithms were developed 

in 1977-78. Lempel-Ziv [7, 8] compression is the most 

widely used technique for lossless file compression. The 

UNIX command gzip is based upon this algorithm only. 

Lempel-Ziv replaces variable sized patterns with fixed 

length codes unlike to Huffman encoding which produces 

variable sized codes. In Lempel-Ziv encoding knowledge 

about pattern frequencies in advance is not an requirement 

as it builds the    pattern table dynamically as it encodes 

the data. The main idea is to analyse the input sequence 

into non-overlapping blocks of different lengths and 

constructing a dictionary of blocks seen thus far. Later on 

occurrences of these blocks are replaced by a pointer to an 

earlier occurrence of the same block. 

 

 Hybrid Columnar Compression 

 

Generally, database table rows are stored in blocks. 

Typically, a row is fully contained in a block, and the 

columns of the row stored next to each other [9]. But too 

large rows can't fit in a block so results in spanning of the 

row to next block known as row chaining—but there is no 

change in the organization of the columns being stored 

next to each other. This compression mechanism replaces a 

value in a row with a much smaller symbol, thus reducing 

the length of the row.  A great deal of compression can be 

achieved by replacing the repeated value with a much 

smaller symbol. In Hybrid Columnar Compression, we get 

a column vector for each column, compress the column 

vectors, and store the column vectors in data blocks. This 

collection of data blocks is known a compression unit. The 

blocks in a compression unit contain all the columns for a 

set of rows as shown in the Fig 1. 
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     Fig 1. Compression Unit in hybrid columnar compression 

 

COMPRESSION SCHEMES IN HBASE 

 

HBase is the Hadoop database. It is a distributed, scalable 

Big Data store. We can use HBase in random, real-time 

read/write access to our Big Data. An open-source follow 

up of BigTable, HBase uses a data model very similar to 

that of BigTable.  A data row in HBase is a sortable row 

key and a variable number of columns, which are further 

grouped into sets called column families. Each data cell in 

HBase can contain multiple versions of the same data 

which are indexed by timestamps. Fig. 2(a) represents an 

HBase table here as a sorted map in contrast to relational 

databases whose data is usually represented as a table form.  

Data cell in the table can be viewed as a key value pair 

where the key is a combination of row key, column and 

timestamp; and the value is an uninterpreted array of bytes 

Fig. 2(b). 

 

 
 

Fig 2. HBase data model [3] 

 

One of the most important features of HBase is the use of 

data compression. It's important because [1]: 

1. Compression reduces the number of   bytes written 

to/read from HDFS. 

2. Saves disk usage. 

3. Improves the efficiency of network bandwidth when 

getting data from a remote server.  

HBase comes with support for a number of compression 

algorithms that can be enabled at the column family level. 

 

   1) Available Codec :  HBase supports the GZip and LZO, 

Snappy codec. Before moving ahead on the details of these 

codecs lets to see the compression algorithm comparison 

Google published in 2005 

 

Table1. Comparison of compression algorithms 

 
 

We can see from Table 1 that some of the algorithms have 

a better compression ratio while others are faster during 

encoding and a lot faster during decoding [1]. 

 

Snappy: With Snappy, released by Google under the BSD 

License, we got access to the same compression used by 

Bigtable (Zippy). It behaves perfectly to provide high speeds 

and reasonable compression. The code is written in C++. 

 

 LZO: Lempel-Ziv-Oberhumer (LZO) is a lossless data 

compression algorithm. It is focused on decompression speed, 

and written in ANSI C. HBase is not shiped with LZO 

because of licensing issues: HBase uses the Apache License, 

while LZO is using the incompatible GNU General Public 

License (GPL). By adding LZO compression support, HBase 

StoreFiles (Hfiles) uses LZO compression on blocks as they 

are written. HBase uses the native LZO library to perform the 

compression, while the native library is loaded by HBase via 

the hadoop-lzo Java library that we built [1]. 

 

GZIP: The GZIP compression algorithm compresses better 

than Snappy or LZO, but is slower in comparison. It comes 

with an additional savings in storage space. 

 

CONCLUSIONS               

               

In this paper, we have outlined few fairly simple 

techniques to achieve database performance improvements 

by data compression.  These techniques not only reduce 

space requirements on disk and I/O performance when 

measured in records per time for permanent and temporary 

data, they also reduce requirements of memory, thus 

reducing the number of buffer faults resulting in I/O. 

column oriented are well suited to compression schemes 

that compress values from more than one row at a time. 

Compression schemes also improve CPU performance by 

allowing database operators to operate directly on 

compressed data. Various compression codecs are 

available to be used with HBase, including LZO, Snappy 

and GZIP. In HBase Compression codecs work best if they 



Priyanka Raichand et al, Journal of Global Research in Computer Science, 4 (7), July 2013, 43-46 

 

© JGRCS 2010, All Rights Reserved  

                                                                                                                                                                                                                                         46 

can decide how much data is enough to achieve an 

efficient compression ratio. HFiles can be compressed and 

stored on HDFS. This helps by saving on disk I/O and 

instead paying with a higher CPU utilization for 

compression and decompression while writing/reading 

data. LZO and Snappy have comparable compression 

ratios and encoding/decoding speeds. 
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