
Volume 2, No. 1, January 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 37

A SIMPLEX GRID COMPUTING METHODOLOGY FOR MONITORING

RESOURCES

G. Mohammed Nazer*
1
 and Dr.S.S.Jayachandran

2
,

1
Head, Dept of Computer Applications,

IFET College of Engineering, Villupuram, India.
kgmohammednazer@gmail.com

2
Principal,

IFET College of Engineering, Villupuram, India.

ssjifet@gmail.com

Abstract – Controlling large scale distributed system is very difficult for the reliable operations of a system. This is because of two

reasons. One, wide fluctuations in the availability of idle processor cycles. Second, communication latencies over multiple

administrative domains. So, the quality of service in executing grid applications becomes a challenge. With such fluctuations there is

no certainty when a grid task will complete its execution time and therefore become unpredictable. To overcome this problem, grid

computing technology is used. More specifically a data grid is used to aggregate the unused storage space into a much large virtual

data store. This is further configured to achieve improved performance and reliability. Thus it has the possibility of substantially

increasing the efficiency of resource usage. A three-tier architecture of Distributed Computing Grid Model (DCGM) is brought

forward. It acts as the infrastructure of multi-site scheduling environment in which Distributed scheduling server is utilized. First

Come First Serve (FCFS) algorithm is implemented. Thus the applications of splitting the numbers depending upon the CPU idle rate

is established and thereby reducing the execution time.

Index : Distributed system; Grid; Applications; Grid Computing; Virtual data store; Autonomic Computing.

INTRODUCTION

A Grid is all about gathering together resources and

making them accessible to users and applications. It is ―a

hardware and software infrastructure that provides

dependable, consistent, pervasive and inexpensive access

to computational capabilities‖. The standardization of

communications between heterogeneous systems created

the Internet explosion. The emerging standardization for

sharing resources, along with the availability of higher

bandwidth, are driving a possibly equally large

evolutionary step in grid computing.

Exploiting underutilized resources: The easiest use of

grid computing is to run an existing application on a

different machine. The machine on which the application

is normally run might be unusually busy due to an unusual

peak in activity. The job in question could be run on an

idle machine elsewhere on the grid.

In most organizations, there are large amount of

underutilized computing resources. Most desktop

machines are busy less than 5% of the time. In some

organizations, even the server machines can often be

relatively idle. Grid computing provides a framework for

exploiting these underutilized resources and thus has the

possibility of substantially increasing the efficiency of

resource usage.

The processing resources are not the only ones that may be

underutilized. Often, machines may have enormous

unused disk drive capacity. Grid computing, more

specifically, a ―data grid‖, can be used to aggregate this

unused storage into a much larger virtual data store,

possibly configured to achieve improved performance and

reliability over that of any single machine.

Resource balancing and Reliability: Another function of

the grid is to better balance resource utilization. A grid

federates a large number of resources contributed by

individual machines into a greater total virtual resource.

For applications that are grid enabled, the grid can offer a

resource balancing effect by scheduling grid jobs on

machines with low utilization. High-end conventional

computing systems use expensive hardware to increase

reliability.

A. Organization of the Paper

In Section II we present the formal Grid Computing model

that we use to overcome the unpredictable execution time.

In particular, we use a data grid to aggregate the unused

storage space into a much large virtual data store. In

Section III we present how to schedule the grid, user’s

perspective, Grid configuring and implementation. In

Section IV we discuss about Monitoring resources, its

progress, recovery and testing. Finally, in Section V we

show various experimentation results and in Section VI we

conclude with results and discuss directions for future

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 38

work.

A FORMAL GRID COMPUTING MODEL

Grid Computing Model: Although coordinated use of

resources is not a trivial problem in a closed environment,

it gets more complicated when it is attempted across

geographical and organizational boundaries. To overcome

the system problems such as identity and authentication,

authorization and policy, resource discovery, resource

allocation, resource management and security, a set of

protocols and mechanisms need to be defined that address

the security and policy concerns of the resource owners

and users. In addition to grid protocols that have to be

defined, a set of grid applications programming interfaces

(API’s) and software development toolkits (SDK’s) need

to be defined. They provide interfaces to the grid protocols

and services as well as facilities applications development

by supplying higher-level abstraction.

Grid architecture is to identify the requirements for

general classes of component. The result is an extensible,

open architectural structure within which can be placed

solutions to key virtual organization requirements.

Components within each layer share common

characteristic but can build on capabilities and behaviors

provided by any lower layer.

Access to additional resources: In addition to CPU and

storage resources, a grid can provide access to increased

quantities of other resources and to special equipment,

software licenses and other services. The additional

resources can be provided in additional numbers and/or

capacity. The grid can enable more elaborate access,

potentially to remote medical diagnostic and robotic

surgery tools with two-way interaction from a distance.

The variations are limited only by one’s imagination.

Resource balancing: A grid federates a large number of

resources contributed by individual machines into a

greater total virtual resource. This feature can prove

invaluable for handling occasional peak loads of activity

in parts of a larger organization. This can happen in two

ways:

 An unexpected peak can be routed to relatively idle

machines in the grid.

 If the grid is already fully utilized, the lowest priority

work being performed on the grid can be temporarily

suspended or even cancelled and performed again

later to make room for the higher priority work.

Load balancing: When jobs communicate with each

other, the Internet or with storage resources, an advanced

scheduler could schedule them to minimize

communications traffic or minimize the distance of the

communications. This can potentially reduce

communication and other forms of contention in the grid.

Reliability: High-end conventional computing systems

use expensive hardware to increase reliability. They are

built using chips with redundant circuits that vote on

results and contain much logic to achieve graceful

recovery from an assortment of hardware failures. The

machines also use duplicate processors with hot

pluggability so that when they fail, one can be replaced

without turning the other off. Power supplies and cooling

systems are duplicated. The systems are operated on

special power resources that can start generators if utility

power is interrupted. All of this builds a reliable system,

but at a great cost, due to the duplication of high-reliability

components.

An alternate approach to the reliability is to relay

more on software technology than expensive hardware. A

grid is just the beginning of such technology. The systems

in a grid can be relatively inexpensive and geographically

dispersed. Thus, if there is a power or other kind of failure

at one location, the other parts of the grid are not likely to

be affected. Grid management software can automatically

resubmit the jobs to other machines on the grid when a

failure is detected and their results can be checked for any

kind of inconsistency, such as computer failures, data

corruption or tampering.

Such grid systems will utilize “autonomic

computing” which is a type of software that automatically

heals problems in the grid, perhaps even before an

operator or manager is aware of them.

Management: The goal to virtualize the resources on the

grid and more uniformly handle heterogeneous systems

will create new opportunities to better manager a larger,

more disperse IT infrastructure. It will be easier to

visualize capacity and utilization, making it easier for IT

departments to control expenditures for computing

resources over a large organization. The grid offers

management of priorities among different projects.

Connectivity – Communicating easily and securely:
This defines core communication and authentication

protocols required for grid specific network transactions.

These utilize the existing Internet protocols such as IP,

Domain Name Service, various routing protocols such as

BGP and so on. Another protocol namely Grid Security

Infrastructure provides uniform authentication,

authorization and message protection mechanism.

Communication protocols enable the exchange of data

between fabric layer resources. Authentication protocols

build on communication services to provide

cryptographically secure mechanisms for verifying the

identity of users and resources.

Resource – Sharing single resources: The resource layer

defines protocols required to initiate and control sharing of

local resources. It builds on connectivity layer

communication and authentication protocols for the secure

negotiations, initiates monitoring, control, accounting and

payment of sharing operations on individual resources.

Protocols defined at this layer include:

 Grid Resource Allocation Management (GRAM)

– Remote Allocation, reservation, monitoring and

control of resources.

 Grid File Transfer Protocol (GFTP) – High

performance data access and transport.

 Grid Resource Information Service (GRIS) –

Access to structure and state information

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 39

Collective – Coordinating multiple resources: This

collective layer contains protocols and services that are not

associated with any one specific resources but rather are

global in nature and capture interactions across collections

of resources. Because collective components build on the

narrow resources can implement a wide variety of sharing

behaviors without placing new requirements on the

resources being shared.

Applications: The final layer in the grid architecture

comprises the applications that operate within a virtual

organization environment. Applications are constructed in

terms of and by calling upon services defined at any layer.

At each layer we have well defined protocols that provide

access to some useful service resource management, data

access and resource discovery.

A. Characteristics of resources used in the Grid

The resources in a grid typically share at least some of

the following characteristics:

 They are numerous.

 They are owned by different organizations and

individuals.

 They have different security requirements and

policies.

 They are heterogeneous.

 Connected by multilevel heterogeneous networks.

 They have different resource management

policies.

 They are likely to be separated geographically.

Several packages sensed monitoring data and made it

available to a distributed framework of services and client

tools. The set of information providers deployed was

determined by identifying and prioritizing desirable grid-

level (such as overall resource availability and

consumption) and Virtual Organization (VO) level. Other

requirements derived from auditing, scheduling and

debugging considerations. The framework was built by

integrating existing monitoring software tools into a

simple way.

B. Resources Selection and Management

Resource Types: A grid is a collection of machines,

sometimes referred to as ―nodes‖, ―resources‖,

―members‖, ―donors‖, ―clients‖, ―hosts‖, ―engines‖ and

many other terms. They all contribute any combination of

resources to the grid as a whole. Some resources may be

used by all users of the grid while others may have

specific restrictions.

Computation: Computing cycles is one of the most

common resource provided by the processors of the

machines on the grid. The processors may vary in its

speed, architecture, software platform and other associated

factors, such as memory, storage and connectivity.

Storage: A grid providing an integrated view of data

storage is sometimes called as a ―data grid‖. Each machine

on the grid usually provides some quantity of storage for

grid. Storage can be of memory attached to the processor

or it can be ―secondary storage‖ using hard disk drives or

other permanent storage media. Memory attached to a

processor usually has very fast access but is volatile. It

would best be used to cache data to serve as temporary

storage for running applications.

Communications: A grid uses software to help jobs to

communicate with each other. An application may be split

itself into a large number of sub-jobs. Each of these sub-

jobs is a separate job in a grid. However, the application

may implement an algorithm, that requires that the sub-

jobs communicate some information among them. The

sub-jobs need to be able to locate other specific jobs,

establish a communication connection with them, and send

the appropriate data.

Observation, management and measurement: Usually

the donor software will include some tools that measure

the current load and activity on a given machine using

either operating system facilities or by direct measurement

using load sensor. Some gird systems provide the means

for implementing custom load sensors for other than CPU

or storage resources. Such measurement information is

useful not only for scheduling, but also for discovering

overall usage patterns in the grid. The statistics can show

trends which may signal the need for additional hardware.

Also, measurement information about specific job can be

collected ad used to better predict the resource

requirements of that job the nest time it is run.

The better the prediction, the more efficiently the

grids workload can be managed. The measurement

information can also be saved for accounting purposes, to

form the basis for grid resource brokering or to manage

priorities more fairly.

Software and licenses: The grid have software installed

that may be too expensive to install on every grid machine.

Using a grid, the jobs requiring this software are sent to

the particular machines on which this software happens to

be installed. When the licensing fees are significant, this

approach can save significant expenses for an

organization.

Special equipment, capacities, architectures and

policies: Platforms on the grid will often have different

architecture, operating systems, devices, capacities and

equipment. Each of these items represents a different kind

of resource that he grid can use as criteria for assigning

jobs to machines. While some software may be available

on several architectures, they are often designed to run

only on a particular type of hardware and operating

system. Such attributes must be considered when

assigning jobs to resources in the grid.

Jobs and Applications: Although various kinds of

resources on the grid may be shared and used, they are

usually accessed via an executing ―application‖ or ―job‖.

Usually we use the term ―application‖ as the highest level

of a piece of work the grid. Jobs are programs that are

executed at an appropriate point on the grid. They may

compute something, execute one or more system

commands, move or collect data or operate a machinery. A

grid application that is organized as a collection of jobs is

usually designed to have these jobs execute in parallel on

different machines in the grid.

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 40

Selection of Resources: The various steps included in the

selection of various resources in a grid are:

 Check the system status

 Read the CPU Idle Rate

 System status if enable, using the commands

(Iostat and Vmstat) we retrieve CPU Idle Rate.

 Check the available memory.

Large software systems are difficult to build in a

timely manner by just collecting requirements, analyzing

the problem, and then partitioning the many functional

components to programmers and finally integrating and

testing modules built by multiple programmers. This

waterfall-style development of new software systems from

the ground up is increasingly untenable as the scale of

software grows. In the near future large systems will

typically be composed using libraries and existing legacy

code to reduce the development risk and cost.

Resource Management: Grid systems allow applications

to assemble and use collections of resources on an as-

needed bass, without regard to its physical location. Grid

middleware and other software architecture that manage

resources have to locate and allocate resources according

to application requirements. They also have to manage

other activities like authentication and process creation

that are required to prepare a resource to use. Figure 2.1

shows the various resource selection process.

Figure 2.1 Resource Selection

Aggregating utilization data over a larger set of projects

can enhance an organization’s ability to project future

upgrade needs. When maintenance is required, grid work

can be rerouted to other machines without crippling the

projects involved.

Various tools may be able to identify important trends

throughout the grid, informing management of those that

require attention.

C. Building a Grid

How to build the grid? The simplest grid consists of just

a few machines, all of the same hardware architecture and

same operating system, connected on a local network. This

kind of grid uses homogeneous systems so there are fewer

considerations and may be used just for experimenting

with grid software. The machines are usually in one

department of an organization and their use as a grid may

not require any special policies or security concerns.

Because the machines have the same architecture and

operating system, choosing application software for these

machines is usually simple. Figure 2.2 shows such a

simple grid architecture.

A grid may grow to cross organization boundaries and

may be used to collaborate on projects of common

interest, which is referred to as ―Intergrid‖. The highest

levels of security are usually required in this configuration

to prevent possible attacks and spying. The ―Intragrid‖

offers the prospect for trading or brokering resources over

a much wider applications.

Figure 2.2 A Simple Grid Architecture

Deployment Planning: The use of a grid is often born

from a need for increased resources of some type. One

often looks to their neighbor who may have excess

capacity in the particular resource. One of the first

considerations is the hardware available and how it is

connected via a LAN or WAN. Next, an organization may

want to add additional hardware to augment the

capabilities of the grid. It is important to understand the

applications to be used on the grid. Their characteristics

can affect the decisions of how to best choose and

configure the hardware and its data connectivity.

Security: Security is a much more important factor in

planning and maintaining a grid than in conventional

distributed computing, where data sharing comprises the

bulk of the activity. In a grid, the member machines are

configured to execute programs rather than just move data.

This makes an unsecured grid potentially fertile ground for

viruses and Trojan horse programs. For this reason, it is

important to understand exactly which components of the

grid must be rigorously secured to deter any kind of attack.

Furthermore, it is important to understand the issues

involved in authenticating users and properly executing

the responsibilities of a certificate authority.

Organization: The technology considerations are

important in deploying a grid. However, organizational

and business issues can be equally important. It is

important to understand how the departments in an

organization interact, operate, and contribute to the whole.

Often, there are barriers built between departments and

projects to protect their resources in an effort to increase

the probability of timely success.

However, by rethinking some of these relationships,

we can find that more sharing of resources can sometimes
benefit the entire organization better. For example, a

project that finds itself behind schedule and over budget

may not be able to afford the resources required to solve

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 41

the problem. A grid would give such projects an added

measure of safety, providing an extra margin of resource

capacity needed to finish the project. Similarly, a project

in its early stages, when computing resources are not being

fully utilized, may be able to donate them to other projects

in need.

Management Components: Any grid system has some

management components. First, there is a component that

keeps track of the resources available to the grid and

which users are members of the grid. This information is

used primarily to decide where grid jobs should be

assigned. Second, there are measurement components that

determine both the capacities of the nodes on the grid and

their current utilization rate at any given time. This

information is used to schedule jobs in the grid. Such

information is also used to determine the health of the

grid, alerting personnel to problems such as outages,

congestion, or over commitment. This information is also

used to determine overall usage patterns and statistics, as

well as to log and account for usage of grid resources.

Third, advanced grid management software can

automatically manage many aspects of the grid. This is

known as ―autonomic computing,‖ or ―recovery oriented

computing.‖ Software would automatically recover from

various kinds of grid failures and outages, finding

alternative ways to get the workload processed.

Donor Software: Each machine contributing resources

typically needs to enroll as a member of the grid and

install some software that manages the grid’s use of its

resources. Usually, some sort of identification and

authentication procedure must be performed before a

machine can join the grid. A certificate authority can be

used to establish the identity of the donor machine as well

as the users and the grid itself. Some grid systems provide

their own login to the grid while others depend on the

native operating systems for user authentication.

In the latter case, a user ID mapping system may be

needed to match the user’s rights properly on different

machines, which is manually maintained by a grid

administrator. He determines which user ID a given user

may possess on each grid machine and enters these IDs in

a protected database or registry. In this way, when grid

jobs are submitted to different machines for a user, the

proper local machine user ID is used for determining the

users rights. In some grid systems, it is possible to join the

grid without any special authentication.

Software Submission: Usually any member machine of a

grid can be used to submit jobs to the grid and initiate grid

queries. However, in some grid systems, this function is

implemented as a separate component installed on

―submission nodes‖ or ―submission clients.‖ When a grid

is built using dedicated resources rather than scavenged

resources, separate submission software is usually

installed on the user’s desktop or workstation.

Distributed Grid Management: Larger grids may have

hierarchical or other type of organizational topology

usually matching the connectivity topology. That is,

machines locally connected together with a LAN form a

―cluster‖ of machines. The grid may be organized in a

hierarchy consisting of clusters of clusters.

The work involved in managing the grid is distributed to

increase the scalability of the grid. The collection and grid

operation and resource data as well as job scheduling is

distributed to match the topology of the grid. For example,

a central job scheduler will not schedule a submitted job

directly to the machine which is to execute it. Instead the

job is sent to a lower level scheduler, which handles a set

of machines (or further clusters). The lower level

scheduler handles the assignment to the specific machine.

Similarly, the collection of statistical information is

distributed. Lower level clusters receive activity

information from the individual machines, aggregate it,

and send it to high level management nodes in the

hierarchy.

GRID SCHEDULING

Grid scheduling is defined as the process of making

scheduling decisions involving resources over multiple

administrative domains. This process can include

searching multiple administrative domains to use a single

machine or scheduling a single job to use multiple

resources at a single site or multiple sites. A grid scheduler

must make a resource selection in an environment where it

has no control over the local resources, the resources are

distributed and information about the system is often

limited.

A Grid is a distributed collection of computer and storage

resources maintained to serve the needs of some

community or virtual organization (VO). Any of the

potentially large number of authorized users within that

VO has access to all or some of these resources and is able

to submit jobs to the Grid and expect responses. The

choice of algorithms used to schedule jobs in such

environments depends on the target application.

Scheduling strategically allocates the CPU to a

process based on specified criteria. There are many

different methods of selecting which process will be given

control of the CPU. Each of these methods follows a

different scheduling algorithm and has advantages and

disadvantages.

Purpose of scheduling: The purpose of scheduling is to

maximize the utilization of the CPU. In order to do this, a

process should be running at all times. For example, if a

process is waiting for some event to occur before it is able

to continue execution, then it should not have control of

the CPU. If it does, then the CPU is being wasted.

Types of scheduling: There are three main scheduling

approaches for achieving predictable execution times in

grids.

Advanced Reservations: Used in silver and interleaved

hybrid scheduling, aims to build mechanisms for

requesting exclusive use of a portion of the capacity of a

resource for grid jobs, and therefore avoid having

fluctuating shared resource capacities. The drawback of

this approach is that not all local schedulers provide

advanced reservation support.

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 42

Predictive Techniques: Predictive techniques are

implemented in the network weather service. It uses

statistical extrapolation of historical measurement data to

forecast processor utilization and network bandwidth.

Grid schedulers use this information to estimate

application execution time and perform scheduling.

Apples and every ware are examples of predictive

technique-based systems. The predictive approach

assumes that performance data of past execution of

applications on known resources are available. This

assumption however is not practical since there are

scenarios where resource joined and leave the grid on at

any time, or where there are new applications submitted

for execution. This technique is also difficult to implement

since most current systems do not provides the additional

information required by predictive techniques.

Feedback Control: Feedback control is an approach

widely used in engineering to updating high performance

in the presence of uncertainty. The key idea is to compare

measured with the desired performance and to perform

corrections dynamically. CHAIMS a service-centered grid

represents local resources as service providers and grid

tasks are represented as service request, is one system

using feedback control it monitors service fulfillment

progress and uses the information to repair schedulers.

Grad soft is another system using feedback control

approach. It providers an application development

environment for building grid jobs that can automatically

adapt to changing grid environments.

The feedback control approach has several advantages

over advanced reservation and predicated techniques.

First, it requires no additional support from local

schedulers. Hence, a grid scheduler implementing this

approach can interface with any local scheduler. Second, it

does not require data of past application executions.

Therefore, a grid scheduler can provide predictable

execution times for the grid applications that have not

been previously executed.

Despite the advantages of the feedback control scheduling

approach, such systems require extensive use of

application development and profiling tools. Both

CHAIMS and Grad soft use complex methods for

application performance monitoring and schedule

connections. This results in complex frameworks for

application development. These frameworks include

special compilers and application toolkits that might be

difficult for new application developers to learn and use.

Schedulers: Most grid systems include some sort of job

scheduling software. This software locates a machine on

which to run a grid job that has been submitted by a user.

In the simplest cases, it may just blindly assign jobs in a

round-robin fashion to the next machine matching the

resource requirements. However, there are advantages to

using a more advanced scheduler. Some schedulers

implement a job priority system. This is sometimes done

by using several job queues, each with a different priority.

As grid machines become available to execute jobs, the

jobs are taken from the highest priority queues first.

Policies of various kinds are also implemented using

schedulers.

 Policies can include various kinds of constrains on jobs,

users, and resources. For example, there may be a policy

that restricts grid jobs from executing at certain times of

the day.

Schedulers usually react to the immediate grid load. They

use measurement information about the current utilization

of machines to determine which ones are not busy before

submitting a job. Schedulers can be organized in a

hierarchy. For example, a meta-scheduler may submit a

job to a cluster scheduler or other lower level scheduler

rather than to an individual machine. More advanced

schedulers will monitor the progress of scheduled jobs

managing the overall work-flow. If the jobs are lost due to

system or network outages, a good scheduler will

automatically resubmit the job elsewhere. However, if a

job appears to be in an infinite loop and reaches a

maximum timeout, then such jobs should not be

rescheduled. Typically, jobs have different kinds of

completion codes, some of which are suitable for re-

submission and some of which are not. Reserving

resources on the grid in advance is accomplished with a

―reservation system‖.

It is more than a scheduler. It is first a calendar based

system for reserving resources for specific time periods

and preventing any others from reserving the same

resource at the same time. It also must be able to remove

or suspend jobs that may be running on any machine or

resource when the reservation period is reached.

 Establishing a connection to a service - The

primitives setup and terminate all establish and end

the connection from a client to a service.

 Estimation - Estimate allows a client to ask a

service for cost estimates for a specific invocation. It

is available both prior and during execution. The

output is to be a name-tuple list (name of the cost

factor, value of the cost factor and its uncertainty). If

the service cannot provide estimates, its wrapper

returns as reasonable values as possible, perhaps

based on past executions. Cost estimates allow the

composer or a CLAM optimizer to choose among

alternative services and/or optimal execution paths.

 Executing service methods - Methods are executed

by the following four calls. Invoke, examine, extract

and terminate. Invoke starts the execution of a

method, which then proceeds asynchronously;

multiple, invokes with different parameters can

occur within a single setup.

A. Using a Grid – A User’s Perspective

In this section, we describe the typical usage activities

in using the grid from an user’s perspective.

Enrolling and Installing a Grid Software: A user first

enrolls as a grid user, and installs the provided grid

software on its own machine. He may optionally enroll his

machine as a donor on the grid. Enrolling in the grid may

require authentication for security purposes. The user

positively establishes his identity with a certificate

authority. This should not be done solely via the Internet.

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 43

The certificate authority must take steps to assure that the

user is in fact who he claims to be.

The certificate authority makes a special certificate

available to software needing to check the true identity of

a grid user and his grid requests. Similar steps may be

required to identify the donating machine. The user has the

responsibility of keeping his grid credentials secure. Once

the user and/or machine are authenticated, the grid

software is provided to the user for installing on his

machine for the purposes of using the grid as well as

donating to the grid. This software may be automatically

pre-configured by the grid management system to know

the communication address of the management nodes in

the grid and user or machine identification information.

In this way, the installation may be a one click operation

with a minimum of interaction required on the part of the
user. In less automated grid installations, the user may be
asked to identify the grid’s management node and possibly

other configuration information. He may choose to limit

the resources donated to the grid, the times that his

machine is usable by the grid, and other policy related

constraints. The user may also need to inform the grid

administrator which user IDs are his on other machines

that exist on the grid.

Logging onto the Grid: To use the grid, most grid

systems require the user to log on to a system using a user

ID that is enrolled in the grid. Other grid systems may

have their own grid login ID separate from the one on the

operating system. A grid login is usually more convenient

for grid users. It eliminates the ID matching problems

among different machines. To the user, it makes the grid

look more like one large virtual computer rather than a

collection of individual machines. Globus, for example,

implements a proxy login model that keeps the user logged

in for a specified amount of time, even if he logs off and

back on the operating system and even if the machine is

rebooted. Once logged on, the user can query the grid and

submit jobs. Some grid implementations permit some

query functions if the user is not logged into the grid or

even if the user is not enrolled in the grid.

Queries and Submitting Jobs: The user usually perform

some queries to check to see how busy the grid is, to see

how his submitted jobs are progressing, and to look for

resources on the grid. Grid systems usually provide

command line tools as well as graphical user interfaces

(GUIs) for queries. Command line tools are especially

useful when the user wants to write a script that automates

a sequence of actions. For example, the user might write a

script to look for an available resource, submit a job to it,

watch the progress of the job, and present the results when

the job has finished. Job submission usually consists of

three parts, even if there is only one command required.

First, some input data and possibly the executable program

or execution script file are sent to the machine to execute

the job. Sending the input is called ―staging the input

data.‖ Alternatively, the data and program files may be

pre-installed on the grid machines or accessible via a

mountable networked file system. When the grid consists

of heterogeneous machines, there may be multiple

executable program files, each compiled for the different

machine platforms on the grid.

A nice feature provided by some grid systems is to register

these multiple versions of the program so that the grid

system can automatically choose a correctly matching

version to the grid machine that will run the program.

Some grid technologies require that the program and input

data be first processed or ―wrappered‖ in some way by the

grid system.

This may be done to add protective execution controls

around the application or just too simply collect all of the

data files into one.

Second, the job is executed on the grid machine. The grid

software running on the donating machine executes the

program in a process on the user’s behalf. It may use a

common user ID on the machine or it may use the user’s

own user ID, depending on which grid technology is used.

Some grid systems implement a protective ―sandbox‖

around the program so that it cannot cause any disruption

to the donating machine if it encounters a problem during

execution. Rights to access files and other resources on the

grid machine may be restricted.

Third, the results of the job are sent back to the submitter.

In some implementations, intermediate results can be

viewed by the user who submitted the job. In some grid

technologies that do not automatically stage the output

data back to the user, the results must be explicitly sent to

the user, perhaps using a networked file system.

Scripts are also useful for submitting a series of jobs,

for a parameter space application, for example. Some

computation problems consist of a search for the desired

result based on some input parameters. The goal is to find

the input parameters that produce the best desired result.

For each input parameter, a separate job is executed to find

the result for that value. The whole application consists of

many such jobs, which explore the results for a large

number of input parameter values. Scripts are usually used

to launch the many sub-jobs, each receiving their own

particular parameter values. Parameter inputs can

sometimes be more complex than simply a number.

Sometimes a different input data set represents the ―input

parameter.‖ Scripts help automate the large variety of

more complex parameter space study problems.

For simpler parameter space inputs, some grid

products provide a GUI to submit the series of sub-jobs,

each with different input parameter values. When there are

a large number of sub-jobs, the work required to collect

the results and produce the final result is usually

accomplished by a single program, usually running on the

machine at the point of job submission. If there are a very

large number sub-jobs required for an application, the

work of collecting the results might be distributed as well.

B. Grid Configuring And Implementation

The data accessed by the grid jobs may simply be

staged in and out by the grid system. However, depending

on its size and the number of jobs, this can potentially add

up to a large amount of data traffic. For this reason, some

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 44

thought is usually given on how to arrange to have the

minimum of such data movement on the grid.

For example, if there will be a very large number of

sub-jobs running on most of the grid systems for an

application that will be repeatedly run, the data they use

may be copied to each machine and reside until the next

time the application runs. This is preferable to using a

networked file system to share this data, because in such a

file system, the data would be effectively moved from a

central location every time the application is run. Thus is

true unless the file system implements a caching feature or

replicates the data automatically.

There are many considerations in efficiently planning the

distribution and sharing of data on a grid. This type of

analysis is necessary for large jobs to better utilize the grid

and not create unnecessary bottlenecks.

IV. MONITORING PROGRESS AND RECOVERY

The user can query the grid system to see how his

application and its sub-jobs are progressing. When the

number of sub-jobs becomes large, it becomes too difficult

to list them all in a graphical window. Instead, there may

simply be a one large bar graph showing some averaged

progress metric. It becomes more difficult for the user to

tell if any particular sub job is not running properly.

A grid system, in conjunction with its job scheduler, often

provides some degree of recovery for sub-jobs that fail. A

job may fail due to a:

 Programming error - The job stops part way with

some program fault.

 Hardware or power failure - The machine or

devices being used stop working in some way.

 Communications interruption - A communication

path to the machine has failed or is overloaded

with other data traffic.

 Excessive slowness

The job might be in an infinite loop or normal job progress

may be limited by another process running at a higher

priority or some other form of contention. It is not always

possible to automatically determine if the reason for a

job’s failure is due to a problem with the design of the

application or if it is due to failures of various kinds in the

grid system infrastructure.

Schedulers are often designed to categorize job failures in

some way and automatically resubmit jobs so that they are

likely to succeed, running elsewhere on the grid. In some

systems, the user is informed about any job failures and

the user must decide whether to issue a command to

attempt to rerun the failed jobs.

Grid applications can be designed to automate the

monitoring and recovery of their own sub-jobs using

functions provided by the grid system software application

programming interfaces (APIs) as mentioned in Figure

4.1.

Figure 4.1 Automation of Monitoring and Recovery

Reserving Resources: To improve the quality of a

service, the user may arrange to reserve a set of resources

in advance for his exclusive or high priority use. A

calendaring system analogy can be used here. Such a

reservation system can also be used in conjunction with

planned hardware or software maintenance events, when

the affected resource might not be available for grid use.

In a scavenging grid, it may not be possible to reserve

specific machines in advance. Instead, the grid

management systems may allocate a larger fraction of its

capacity for a given reservation to allow for the likelihood

of some of the resources becoming unavailable. This must

be done in conjunction with tools that have profiled the

grid’s workload capacity sufficiently to have reliable

statistics about the grid’s ability to serve the reservation.

Traditionally, the definition of task scheduling is the

assignment of a set of tasks to some certain resources by

means of starting and ending time of tasks, subject to

certain constraints. However, computational grid involves

so many resources over multiple administrative domains

that appropriate resources should be selected carefully in

order to provide the best Qos.

Thus, the traditional scheduling model based on static

resources can not satisfy the large-scale dynamic resources

requirement of the grid computing. In this paper, a new

scheduling model oriented to the distributed computational

grid is put forward.

Our scheduling model is new that it deals with

multiple sites. Normally, resource selection algorithms can

be classified into single-site and multi-site resource

selection algorithms. Currently, most of the scheduler

systems adopt the single-site resource selection algorithm

such as Matchmaker/Class Ad system of University of

Wisconsin-Madison, Nimrod/G Scheduler of Monash

University, Silver Grid scheduler of Supercluster

Organization and the Metascheduler of the Poznan

Supercomputing and Networking Center.

In this paper, we propose our enhanced multi-site

resource selection algorithm — FCFS algorithm, based on

the distributed computational grid model and the grid

scheduling model. The FCFS algorithm integrates a new

density-based grid resource-clustering algorithm into the

decoupled scheduling approach of the DCGM and

decreases its time complexity. Also, we establish a

performance model and mapping strategy for the

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 45

synchronous iterative applications and demonstrate the

correctness and effectiveness of FCFS algorithm in our

simulation environment and the campus grid platform.

A. Models

Distributed Computational Grid Model (DCGM): -

Distributed Computing Grid Model adopts three-level

architecture as shown in Fig: the top level consists of Grid

Information Servers (GIS) and Grid Meta Scheduling

Server (GMSS); the second level has several domains and

each domain consists of a Grid Distributed Scheduling

Server (GDSS); all kinds of Grid Computing Resources

(GCR) and Grid User Groups (GUG) are the third level.

 Grid Information Servers (GIS) are the essential part

of any Grid software infrastructure, providing

fundamental mechanisms for discovery and

monitoring [10]. Each domain is controlled at least by

one GIS, which dynamically collects information

about the registered resources and spreads information

to other GISs. A GIS receives Grid information

request sent by GMSS, GDSS and GUG, finds proper

resources and then returns the satisfactory resource

aggregate to the requester.

 Grid Meta Scheduling Servers (GMSS) focus on

harmonizing the scheduling of different GDSSs. The

goal of the GDSS is to avoid distributing the same

resources to two applications when they are submitted

simultaneously. Every GMSS accepts the meta

scheduling request from the GDSSs and cooperates

with other GMSSs to increase the system throughput.

We only focus on the GDSS scheduling policies,

although more work needs to be done for GMSS

policies.

 Grid Distributed Scheduling Servers (GDSS) are the

key component in the architecture, which administers

the efficient use of registered resources and maps the

grand-challenging applications on the selected

resources aggregate. The quantity of the GDSSs in

one domain depends on its scale. When the Grid User

Group (GUG) submits a job to GDSS, the GDSS

contacts with the GIS to gather the information of the

Grid. Then, the GDSS makes use of the decision

module for scheduling and sends the meta scheduling

request to the GMSS. Finally, it dispatches the tasks

to the selected GCRs and retrieves the running result

for the GUG.

 Grid Computational Resources (GCR) is no dedicated

workstations or personal computers, which may be

homogeneous or heterogeneous. Every GCR

registered to GIS acts as the target of task mapping

performed by GDSS or GMSS.

 Grid User Group (GUG) has challenging problems

such as fluid dynamics, weather modeling and nuclear

simulation etc. GUG interacts with Grid environment

through the Grid Portal along with GDSS. On the

whole, the purpose of our model focuses on

constructing ―The Poor Man’s Supercomputer‖ as

SETI@home and Data Synapse’s Live Cluster did,

which provides access to supercomputer level

processing power with a fraction of the cost of a

typical supercomputer.

In this paper, we use resource selection algorithm,

under which we select the resources according to their

CPU idle time using First – come First – serve (FCFS)

algorithm and scheduling is done by Multilevel Feedback

Queue Scheduling algorithm (MFQS), then we schedule

the job according to the algorithm. We do the application

as separating the job and dividing the numbers according

to the resources.

B. Testing Methods

The various testing methods that are used in this paper are

System testing, Validation Testing and Performance

Testing.

System Testing: It checks system status and available

memory.

Validation Testing: It checks CPU Idle rate, system status

& available memory rate.

Performance Testing: It checks the performance of the

system & CPU etc.

EXPERIMENT RESULTS

The following Figure 5.1 shows the various snap shots of

different client information by using Multisite Resource

Selection and Scheduling Algorithm using Grid

computing.

Figure 5.1 Snap shots of different Client/Server information

Figure 5.2 shows the snap shot of Encryption and

Decryption Process completed.

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 46

Figure 5.2 Snap shots showing Encryption Process.

Figure 5.2.1 Snap shots showing Decryption Process.

Table 5.1 and 5.2 shows the various test results of resource

utilization of homogeneous systems in the Grid.

Table 5.1 Test results of resource utilization

Table 5.2 Test results of resource utilization

Figure 5.3 shows the graphical view of our test results.

 Figure 5.3 Graphical view of test results

CONCLUSION

The design of the key component of multisite scheduling

environment, Distributed Scheduling Server (GDSS), is

discussed in detail. Also, we focus on the multisite

resource selection algorithm of GDSS. A three-level

architecture of the Distributed Computational Grid Model

(DCGM) is brought forward and acts as the infrastructure

of multisite scheduling environment. A heuristic strategy,

First – come First – serve (FCFS) algorithm, was

described. In the FCFS algorithm, we mainly introduce the

Multilevel Feedback Queue Scheduling (MFQS) algorithm

to cluster the resources in the distributed computational

grid. Meanwhile, we establish the applications of splitting

the numbers depending upon the CPU Idle Rate and thus

reducing the execution time shown in test bed.

The grid interfaces that will be used by the new

schedulers, autonomic computing agents, and any number

of other services yet to be developed for the grid. Open

Grid Services Architecture is an open standard at the base

of all of these future grid enhancements. It will make it

easier to assemble the best products from various vendors,

increasing the overall value of grid computing. Open

Network project has produced tools that allow us to

develop and test advanced scheduling techniques.

REFERENCES

1. L. Melloul, D. Beringer, N. Sample and G.

Wiederhold, ―CPAM, A Protocol for Software

Composition," CAiSE'99, Heidelberg, Germany, June

1999.

2. Keith Swenson .Simple Workflow Access Protocol

(SWAP),‖ IETF internet draft, August 1998‖.

3. T. Pratt and M. Zelkowitz, ‖Programming Languages,

Design and Implementation‖, 1996, Prentice Hall, Inc.

4. G. Wiederhold, D. Beringer, N. Sample, and L.

Melloul, "Composition of Multi-site Services",

Proceedings of IDPT'99, Kusadasi, Turkey, June

1999.

5. W. Rosenberry, D. Kenney and G. Fisher:

―Understanding DCE‖; O'Reilly, 1994.

6. C. Szyperski, ―Component Software: Beyond Object-

Oriented Programming‖, Addison-Wesley and ACM-

Press New York, 1997.

G. Mohammed Nazer et al, Journal of Global Research in Computer Science 2 (1), January 2011, 37-47

© JGRCS 2010, All Rights Reserved 47

7. G. Wiederhold, P. Wegner, and S. Ceri: ―Towards

Megaprogramming: A Paradigm for Component-

Based Programming‖; Communications of the ACM,

1992(11): p.89-99.

8. J. Hanly, E. Koffman and J. Horvath, Program Design

for Engineers, Addison-Wesley, Menlo Park, CA,

1995.

9. T. Pratt and M. Zelkowitz, Programming Languages,

Design and Implementation, 1996, Prentice Hall, Inc.

10. S.Bray, J. Paoli and C. Sperberg-McQueen,

―Extensible Markup Language (XML) 1.0,‖ W3C

Recommendation, February 1998.

11. R. Buyya, J. Giddy, D. Abramson, ―A Case for

Economy Grid Architecture for Service-Oriented Grid

Computing,‖ 10th IEEE International Heterogeneous

Computing Workshop (HCW 2001), April 2001.

12. P. Keyani, N. Sample, and G. Wiederhold,

―Scheduling Under Uncertainty: Planning for the

Ubiquitous Grid,‖ Fifth International IEEE

Conference on Coordination Models and Languages

(Coord2002).

13. W. K. Shih, J. W. S. Liu, and J. Y. Chung.

―Algorithms for scheduling imprecise computations

with timing constraints,‖ In Proc. IEEE Real-Time

Systems Symposium, 1989.

14. M.J. Atallah et al, "Models and Algorithms for Co-

scheduling Compute-Intensive Tasks on a Network of

Workstations," Journal of Parallel and Distributed

Computing, Vol. 16, 1992.

15. Grimshaw and W. Wulf. ―Legion - a View

from 50,000 Feet,‖ Proc. 5th IEEE Symp. on

High Performance Distributed Computing,

pp. 89-99, IEEE Press.
16. P. Lawrence, editor, Workflow handbook 1997, John

Wiley 1997.

17. T. Anderson, D. Culler, and D. Patterson, ―A Case for

Networks of Workstations: NOW,‖ IEEE Micro,

February 1995.

AUTHORS BIOGRAPHY

Mr. G. Mohammed Nazer obtained

his MCA and M.Phil. in 1992 and

2009 respectively. He is currently

Head, Department of Computer

Applications at IFET College of

Engineering, Villupuram. He has 6

years of Industrial

experience as Software Engineer in Switzerland and

6.5 years of teaching experience. He is currently

pursuing Ph.D. in Computer Science. His interesting

research area is ―Network Security, Security Controls

and Cryptography‖. He has published one paper in

International Journal.

Dr. S. S. Jayachandran has obtained

his B.E(MechanicalEngineering) from Thiagarajar

College of Engineering in 1969, Diploma in

Statistical Quality Control and operations Research

from Indian Statistical Institute, Chennai in

1974, M.E (Industrial Engineering) from College of

Engg., Guindy, Chennai in 1974. He completed his

Ph.D. in 1993 from Anna University, Chennai. He has

carried out projects in the areas of Man power

development under CPS for Ministry of HRD,

Vocational training scheme for TAHDCO and

Infrastructural Development Scheme for DRDA. He

has carried out developmental works for over 100

industries and has conducted a number of Staff &

Student development training programs. He has to his

credit 66 technical publications and guided over 800

students. He is currently Principal, IFET College of

Engineering, Villupuram.

