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ABSTRACT: When a light beam propagates through the turbulent atmosphere, the wavefront of the beam is distorted, 

which affect the image quality of ground based telescopes. Adaptive optics is a means for real time compensation of the 

wavefront distortions. In an adaptive optics system, wavefront distortions are measured by a wavefront sensor, and then 

using an active optical element such as a deformable mirror the instantaneous wavefront distortions are corrected. In 

this paper, the physical background of imaging through turbulence, using Kolmogorov statistics, and the Polarization 

Shearing Interferometry techniques to sense and to correct the wavefront aberrations with adaptive optics have been 

discussed. Simulations of the interferometric records were carried out using Matlab for the study of aberrations in an 

optical system and the effect of the atmospheric turbulence in the interferograms. The data was reduced from the 

interferogram using Fourier Transform Technique and the wavefront was reconstructed from the wavefront slope data. 
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I. INTRODUCTION 

As astronomers attempt to understand the limits of the physical universe, they must look deep into the night sky 

with a sharp eye. Unfortunately, looking into the night sky is like looking up from the bottom of a swimming pool. 

Earth’s atmosphere is made up of many layers having different temperature gradient, different velocity gradient and 

also different density gradient. The chaotic and stochastic changes in these properties of the atmosphere causes a fluid 

called turbulence or turbulent flow. Turbulence causes the formation of eddies of many different length scales. Most of 

the kinetic energy of the turbulent motion is contained in the large scale structures. The energy "cascades" from these 

large scale structures to smaller scale structures by an inertial and essentially in viscid mechanism. This process 

continues, creating smaller and smaller structures which produces a hierarchy of eddies. Eventually this process creates 

structures that are small enough that molecular diffusion becomes important and viscous dissipation of energy finally 

takes place.  

 

 

 

 

 

 
 

Fig.1: Turbulence Illustration 

 

The resolving power of a telescope when imaging through earth atmospheric turbulence is not proportional to 

telescope diameter but to the characteristic coherence length [1] of turbulence called Fried parameter ro. Typically ro is 

the order of 10–20 centimeters at optical wavelengths at good viewing site. Imaging a distant star appears to be point 

and the wavefront that enters at telescope pupil is plane wavefront in the absence of atmosphere. The planar wave-

fronts propagate through the earth’s atmosphere; the optical path length is attenuated due to random refractive index 

http://en.wikipedia.org/wiki/Eddy_(fluid_dynamics)
http://en.wikipedia.org/wiki/Inviscid_flow
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fluctuations. As a result, the wavefront phase changes spatially and temporally, so the wavefront is no longer plane.  A 

secondary effect of this phenomenon is scintillation. 

In Fig.2 shows simulation of a point source images diffraction limited case and in the presence of strong 

turbulence. The intensity is normalized to the peak intensity of PSF in the absence of turbulence. This light spread over 

a larger area demonstrates high resolution and high contrast imaging difficult. 

  

Fig.2.A: No Turbulence                      Fig.2. B:  Strong Turbulence 

 There are many possible solutions in order to improve the image quality at the focal plane of the telescope. 

Those are space telescopes, speckle interferometry [2] and adaptive optics [3]. Depending up on the performance and 

cost of the technique, one can choose the best suitable method to minimize atmospheric effects. 

The best option to minimize the atmosphere effects is launch a telescope into space, but it has its own limitations 

of launching technology for big telescopes and cost of operation. In, speckle interferometry using blind de-convolution 

post processing methods are used to improve the image quality. These methods require short-exposure images and are 

not suited for very faint objects. Alternative to above, Babcock [3] suggested a solution with one technique to correct 

those dynamic distorted wave-fronts called “Adaptive Optics “(AO).  It basically consists of wavefront sensor, 

Deformable mirror and control hardware. Today this AO has benefitted from modern technology and high speed 

computer, which have enabled to correct distortions in real time. With this current technology and using AO the 

efficiency of a ground based telescope has been greatly improved. For the development of an AO system, it is essential 

to understand the characteristics of the atmospheric turbulence and its effect on the image quality.  

II. IMAGING THROUGH ATMOSPHERIC TURBULENCE 

The phase distortions that arrive at the telescope entrance are the cumulative effect of refractive index variations 

through a vertical path in the atmosphere. The refractive index structure function is given by equation (1.1). 

                                             

2 2/3( ) ( )n nD r C h r



       (1.1) 

The Kolmogorov model of turbulence distortions prescribes the specific form of the phase structure function 

[4]   
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Developed from this Kolmogorov model, the Fried parameter ro is 

          

6/5 3/5 2 3/5

0 0.185 cos( ) ( )Nr C dh         (1.3) 

 Where, is the zenith angle of observation and  is the observational wavelength.   

Atmospheric turbulence changes temporally and spatially.  For long exposure times, averaged PSF we observe 

with imaging object.   

      
.effective Telescope AtmosphereOTF OTF OTF

     (1.4) 

The atmospheric Optical Transfer Function (OTF) is related to the statistics of the atmospheric phase 

aberrations,  

        
( ) exp[ 0.5 ( )]OTF f D f 

         (1.5) 

Now we put this model into long-exposure atmospheric OTF, and we get in the form:     

          

5/3

0

( ) exp[ 3.44( ) ]
f

OTFatmosphre f
r


 

                                                          (1.6) 

From equation(1.6), one can obtain long exposure PSF of atmosphere by taking the Fourier transform of OTF. The 

FWHM of the atmospheric PSF called as seeing [5] , is related to fried parameter ro 

    Seeing = 0.98λ/ro                    (1.7) 

At the wavelength of 0.5 micron, 1 arc second seeing corresponds to ro =10.1 cm.  

And the dependency of fried parameter from equation.1.3 with wavelength is given by  

                                       

6/5

0 0( ) ( / )r r  
                                            (1.8)                                                                                                          

III. GENERATION OF KOLMOGOROV MODEL OF ATMOSPHERIC TURBULENCE 

 Turbulent flow is very complicated and still it is not entirely understood.  Over the last hundred years, modelling 

the effects of turbulence on optical propagation has received much attention. The focus on statistical modelling [4] has 

produced several useful theories. In these theories, it is necessary to resort to statistical analysis, because it is 

impossible to exactly describe the refractive index for all positions in space and all time. The most widely accepted 

theory of turbulence flow, due to consistent agreement with observation, was first put forward by Andrei Kolmogorov 

[6].  

 Kolmogorov model assumes that energy injected into turbulent medium on large spatial scales (outer scale, Lo) 

forms eddies. These large eddies cascade the energy into small scale eddies until it becomes small enough (small scale, 

l0) that the energy is dissipated by the viscous properties of the medium. The inertial range between inner and outer 

scales Kolmogorov predicted a power law distribution of the turbulent power with spatial frequency, κ 
(-11/3)

.  

Atmospheric turbulence is a random process. Kolmogorov used structure functions to describe non-stationery random 

functions associated with turbulence and its related parameters of temperature, humidity and velocity. Typically a 

correlation function would be used to describe the statistics between distances in material. However, for pure 

Kolmogorov turbulence with an infinite outer scale, the correlation function tends towards infinity as the separation 

between two points goes to zero. For this reason structure function has been used.  
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As such, it is modelled with phase structure function 
( )D r


  , D ϕrdefined as the average difference between two 

values of a random variable for a large number of points, with the random variable  being the phase ( )x


 , i.e.  

                         

2

( ) ( ) ( )D r x r x
   



 
     
 
                   (2.1) 

 The structure function for refractive index [4, 6] variation of turbulent air in the Kolmogorov model is given by  

                                             

2

( ) ( ) ( )nD r n x r n x
    

    
 
                                                                           (2.2)                                    

                                                    

2 2/3( )n nD r C r



, 0 0l r L 

                                                                           (2.3) 

Where, 

2
( ) ( )x l x





 

 
 phase of an optical wave, 

( )l x


 is optical path length, 
( )n x


 is the refractive index at 

particular coordinate x , Cn2 (h) is the vertical refractive index structure constant which is strongly altitude dependent. 

Tatarski [7] showed the three dimensional power spectrums,
( )

N


 of the refractive index variations is  

                                             

2 11/3( ) 0.033 NN
C  

                                                                    (2.4)                                                      

 Where, k is the scalar wave number vector, (
, ,x y z  

). 

Kolmogorov turbulence model is valid for atmospheric turbulence. It is experimentally proved by Nightingale 

& Buscher (1991) [8]. In case of atmospheric turbulence it is solar energy and wind shear which provides the initial 

energy   on large scales and it is dissipated as heat by viscous friction of the air at the inner scale [9].   

The outer scale is an important parameter in turbulence statistics and its range of values are much debated in 

astronomical databases.  The standard spectrum of Kolmogorov turbulence is usually written with infinite outer scale 

and the effect of infinite outer scales is to reduce the lower spatial frequency contributions. This effect is more 

pronounced as the telescope diameter exceeds the size of outer scale.  Given that the outer scale is usually 10 m to 

100m, many of the future extremely large telescopes will have larger diameter than the outer scale.  

                 This power spectrum is only valid within the inertial range between the inner and outer scale [11] as it tends 

to infinity at larger spatial separations. So in order to accommodate the finite inner and outer scales, the Kolmogorov 

power spectrum was modified by Von Karman power spectrum which is given by.                                                  

  

2 2 2 11/6 2 2

0( ) 0.033 ( ) exp( / )N iN
C    

  
                                                      (2.5)                                                 

Where, 0 02 / L 
 , 05.92 /i l 

 and 2 / L  . It can be expressed in another form with Fried parameter ro, 
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For infinite outer scale ( 0 0 
) and zero inner scale           ( i  

) above equation reduces to  

                                                                           

5/3 11/3

0( ) 0.023( / )
N

D r 


                                               (2.7)                                                                                                                                                    

  The Power spectral density (PSD) and phase screen f(r) are related as 

                                                                                   

2

( ) ( ) ikr

N
f r e dr






 
                                                 (2.8) 

From above equation phase screen is given by:  

                                                                          

( ) ( ) ikr

N
f r e dk





 
                                                         (2.9) 

Where, f(r) is 2D - Kolmogorov phase screen, can be obtained from inverse Fourier  Transform of square root of Von 

Karman power spectrum of turbulent atmosphere . When dealing with electromagnetic propagation through the 

atmosphere, the refractive index can be considered independent of time over short (100μs) time scales.  Because the 

speed of light is so fast, the time it takes light to traverse even a very large turbulent eddy is much, much shorter than 

the time it takes for an eddy’s properties to change. Consequently, temporal properties are built into turbulence models 

through the Taylor frozen turbulence hypothesis.   

IV. INTERFEROGRAM SIMULATIONS 

 
The use of Zernike polynomials for describing the aberrations introduced by the atmospheric turbulence is well 

known. The PSI wavefront sensor measures the wavefront slope. Noll (1976) [10] has introduced the integral 

representation and the derivatives of the Zernike polynomial. The derivatives of the Zernike Polynomials can be written 

as a linear combination of Zernike polynomial. Hence, the slope information from the wavefront sensor can be 

conveniently expressed as a function of the Zernike polynomial. The gradient of the Zernike polynomial is represented 

by 

 

                                                                                                                                                        (3.1) 

 

                                                                          (3.2) 

where γjj is called Zernike Derivative matrix. Upon proceeding with Zernike coefficients, the interferograms are 

simulated for different values of the Zernike coefficients representing different aberrations. 

 

Using Matlab, a code for a straight fringe in the interferometer was developed. An arbitrary turbulent phase 

screen was incorporated into the fringe pattern due to which the fringe pattern gets distorted. On the application of a 

different turbulent phasescreen, the fringes gets distorted in a different way. Since, straight the fringes cannot be 

analyzed as such, so we have to consider the one-dimensional plot of the distorted fringe pattern. The one-dimensional 

plot of the distorted fringe pattern was taken into account for easy analysis. The Fourier Transform Technique was 

applied to the one-dimensional plot to find out the original signal after removing the entire unwanted signal. The one-
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dimensional plot was fast fourier transformed to give all the positive and the negative frequencies present in the signal. 

To remove all the higher frequencies and unwanted signals, the power spectrum of the fast fourier transformed plot was 

calculated. Considering only the frequency that contains the maximum information, all the other frequencies are 

neglected. Now the inverse fourier transform of the above signal that contains the maximum information was found out 

to get back the signal in terms of the spatial co-ordinates. Then the phase was unwrapped to remove the integral 

multiple of the 2π uncertainties. From the unwrapped phase, the Zernike coefficients were found out using the values 

the γjj values for both the x- and y-variables as given by Noll. The Coefficient Matrix A was finally calculated and the 

various Zernike coefficient values was recorded for the different interferometric patterns. 

 
 

Fig. 3: Representation of straight interference fringe pattern in the absence of turbulence with D/r0 =0. 

 
Fig. 4: Representation of interference fringe pattern with a turbulent phasescreen of D/r0 =0.2. 

 

 
 

Fig.5: Representation of interference fringe pattern with a turbulent phasescreen of D/r0 =2.5. 
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Fig. 6: Representation of interference fringe pattern with a turbulent phasescreen  of D/r0 =25. 

V. WAVEFRONT  RECONSTRUCTION 

 
In this section the reconstruction of the wavefront has been calculated, from the slope data. After finding out the 

slope of the wavefront the wavefront is reconstructed using modal approach. the wavefront is calculated with modal 

approach using Zernike basis functions using 21 modes. 

 

 
Fig. 7: Three  Dimensional  surface plot of the unwrapped phase with a turbulent phasescreen of D/r0=0. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8: Reconstructed Wavefront obtained with a turbulent phasescreen  of D/r0 =0. 
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Fig. 9: Reconstructed Wavefront obtained with a turbulent phasescreen  of D/r0 =0.2. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

                    
 

Fig. 10: Reconstructed Wavefront obtained with a turbulent phasescreen  of D/r0 =2.5. 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Reconstructed Wavefront obtained with a turbulent phasescreen  of D/r0=25. 

VI. CONCLUSION 

Estimation of the wavefront errors is a very important aspect in adaptive optics.  Besides the telescope system 

errors, the atmospheric turbulence also accounts for the major contribution to the errors.  The atmospheric turbulence 

is characterized by the Kolmogorov model.  It is essential to accurately estimate these aberrations in the dynamic 

situations, in order to apply, real time corrections.   A simulation  study of the shearing  interferometers  prove that 
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the Shearing interferometer performs better in the presence of low Fried parameter and for Rytov numbers greater 

than 0.2.   The Fourier theoretical approach has been applied to the Polarization Shearing Interferometer (PSI) to 

establish the basis of the wavefront sensing. Theoretical simulations were carried out for visualization of various 

aberrations in the Interferometric fringe pattern.  The study reveals that under moderate turbulent conditions where 

D/ro  = 0.025, the sensitivity  of the PSI  is not altered  significantly.   
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