
Volume 1, No. 2, September 2010

 Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

���������	
	�������������������� � � ��

A Study on the Performance of CT-APRIORI and CT-PRO Algorithms using

Compressed Structures for Pattern Mining

Mrs. A.B. Dhivya*1 and Dr. (Mrs.) B.Kalpana2

*1Avinashilingam Deemed University for Women, Coimbatore, India.

Email: divya21385@yahoo.com1

2Avinashilingam Deemed University for Women, Coimbatore, India.
Email: kalpanabsekar@yahoo.com2

Abstract: Many algorithms have been proposed to improve the performance of mining frequent patterns from transaction databases. Pattern growth algorithms like
FP-Growth based on the FP-tree are more efficient than candidate generation and test algorithms. In this paper, we propose a new data structure named
Compressed FP-Tree (CFP-Tree) and an algorithm named CT-PRO that performs better than the current algorithms including FP-Growth and Apriori. The number
of nodes in a CFP-Tree can be up to 50% less than in the corresponding FP-Tree. CT-PRO is empirically compared with FP-Growth and Apriori. CT-PRO is also
extended for mining very large databases and its scalability evaluated experimentally.�All these results point CT-PRO as the right candidate for generating a
compact version of the original transaction database, which is small in size and which performs frequent pattern mining in a fast and efficient manner.

Key Words: Frequent Patterns; Transaction Databases; FP-Growth; Apriori; CFP-Tree; CT-PRO.

INTRODUCTION

In a scenario where WWW has become more important every
day, to have a clear and well organized web site has become
one of the vital goals of enterprises and organizations.
Association Rule Mining (ARM) [1] has been the focus of
research in many communities (e.g. data mining, artificial
intelligence, machine learning) for a decade. Traditionally,
ARM has been defined on market basket data. However, it has
been used in many other application areas and also extended
to data mining tasks of classification [2] and clustering [3].
However, the existing algorithms rely on expensive
computations using large amounts of memory or require many
I/O scans over the database.
ARM algorithms typically divide the problem into two parts:
find the frequent patterns and then use them to form the rules.
The general performance of ARM is determined by the first
part. Once frequent patterns are found, generating the
association rules is straightforward. Constraints such as
support and confidence are used to reduce the search space
during mining. The Apriori property (if a pattern is infrequent
then its supersets can never be frequent) is the foundation for
reducing the cost of all algorithms in ARM.
The Apriori algorithm uses the candidate generation and test
approach [4]. The main drawback of this approach is the many
traversals over the database required to enumerate a
significant part of the possible 2n frequent

patterns where n is the number of items. Another factor
contributing to the efficiency of FP-Growth is its compact
representation of the database in memory using a variant of
the prefix tree named FP-Tree.
 The use of prefix tree itself was introduced first in [6]. The
performance gain from using variants of the prefix tree for
representing transactions was previously demonstrated in [5]
[7] [8] and [9].

In this paper, we propose a new data structure named
Compressed FP-Tree (CFP-Tree for short) that is even more
compact than FP-Tree. In this paper, we present a new
algorithm named CT-PRO that divides the database into
several projections and then mines each projection
independently. The projections are also represented as CFP-
Trees. The performance of CT-PRO is compared against other
known efficient algorithms.
To study the feasible performance range of the algorithm, we
carried out extensive testing using a set of databases with
varying number of both transactions and average number of
items per transaction.

RELATED WORK

Given a set of items I= {I1, I2, I3, …, In} and a database D as
a set of transactions T, each transaction is a subset of I (TÍ I)
and is identified by a TID. An itemset X is a subset of items
(XÍ I), and an itemset of length k is called a k-itemset. The
support of an itemset X is the percentage of transactions in D
that contains X. If the support of an itemset is greater than or
equal to a given support threshold s, it is called a frequent
itemset or frequent pattern otherwise it is infrequent. The
objective of frequent pattern extraction is to find all frequent
patterns, given an input database D and a support threshold s.
The input database D can be represented as an m x n matrix
where m is the number of transactions and n is the number of
items. We can denote the presence or absence of an item in
each transaction by a binary value (1 if present, else 0).
Counting the support for an item is the same as counting the
number of 1s for that item in all the transactions. The
sparseness or denseness can be determined by a density
measure defined as the percentage of 1s in the total of 1s and
0s. If a dataset contains more 1s than 0s, it can be considered
as a dense dataset, otherwise, as a sparse dataset.

Tid ITEMS � 1 2 3 4 5

A.B. Dhivya et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 8-15

���������	
	�������������������� � � �� �

1 1 2 3 5 1 1 1 0 1

2 2 3 4 5 0 1 1 1 1

3 3 4 5 0 0 1 1 1

4 1 2 3 4 5 1 1 1 1 1

5 1 2 4 5 1 1 0 1 1

Figure 1. Binary representation of a transaction database

METHODOLOGY

The amount of data stored in databases has increased
tremendously with the widespread use of databases and the
rapid adoption of information systems and data warehousing
technologies. An important type of database that contains
huge knowledge of a business is the transaction database. A
transaction database contains information about frequently
used patterns of potential customers. The process of obtaining
this information is called Frequent Pattern Mining and can be
discovered using various data mining techniques, like
clustering, classification, prediction and association analysis.
In this research work two solutions are compared for this
purpose. The first is to use a CT-Apriori (Compact Tree-
Apriori) algorithm and the second is to use CFP-Tree
(Compressed FP-Tree) algorithm. Both the algorithms are
based on association rules and the working of both these
algorithms is explained in this chapter. The algorithms are
analyzed based on memory usage, time and scalability.

Ct-Apriori

Association rule mining algorithms consists of two tasks. The
first task focus on generating all frequent itemsets that satisfy
the user specified minimum support, while the second uses the
frequent itemsets generated in the first task to discover all the
association rules that meet a user defined confidence
threshold.

Compact Transaction Database

Let I = {i1, i2, … , im} be a set of m items. A subset X ⊆ I is
called an itemset. A k-itemset is an itemset that contains k
items.

Definition 3.1: A transaction database TDB = {T1, T2, …, TN}
is a set of N transactions, where each transaction Tn (n ∈ {1,
2, …, N}) is a set of items such that Tn ⊆ I. A transaction T
contains an itemset X if and only if X ⊆ T.

Table I. Example Transaction Database TDB

TID LIST OF ITEMIDs

001 A, B, C, D

002 A, B, C

003 A, B, D

004 B, C, D

005 C, D

006 A, B, C

007 A, B, C

008 B, C

009 B, C, D

010 C, D

Table II. Compact transaction database of TDB

HEAD

ITEM C B D A

COUNT 9 8 6 5

BODY

COUNT LIST OF ITEMIDS

3 C, B, A

1 C, B, D, A

1 B, D, A

1 C, B

2 C, B, D

2 C, D

Algorithm description

CT-Apriori Algorithm: The Apriori algorithm is one of the
most popular algorithms for mining frequent patterns and
association rules.

A.B. Dhivya et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 8-15

���������	
	�������������������� � �
	� �

There are two essential differences between this method and
the Apriori algorithm.

1. The CT-Apriori algorithm skips the initial scan of
database in the Apriori algorithm by reading the head
part of the compact transaction database and
inserting the frequent 1-itemsets into F1. Then
candidate 2-itemset C2 is generated from F1 directly.

2. In the Apriori algorithm, to count the supports of all
candidate k-itemsets, the original database is
scanned, during which each transaction can add at
most one count to a candidate k-itemset. In contrast,
in CT-Apriori, as shown in step 10, these counts are
incremented by the occurrence count of that
transaction stored in the body of the compact
transaction database, which is, in most of the time,
greater than 1.

Compressed FP-Tree (CFP-Tree): The main objective of
compressed FP-Tree (CFP-Tree) is to reduce the size of the
FP-Tree size by half. The items are in descending order of
their frequency in a CFP-Tree and there is a link to the next
node with the same-item-node. FP-Tree stores the item id in
the tree while in CFP-Tree the item ids are mapped to an
ascending sequence of integers that is actually the array index
in HeaderTable. The frequency of each item is also stored in
HeaderTable. The FP-Tree is compressed by removing
identical subtrees of a complete FP-Tree and by succinctly
storing the information from them in the remaining nodes. All
subtrees of the root of the FP-Tree (except the leftmost
branch) are collected together at the leftmost branch to form
the CFP-Tree

Table III. Sample Database

Tid ITEMS Tid ITEMS Tid ITEMS

1 1 2 3 4 6 2 11 1

2 2 4 7 1 4 12 2 3 4

3 1 3 4 8 1 2 3 13 1 2

4 3 9 3 4 14 1 2 4

5 2 3 10 4 15 1 3

Figure 3. FP-Tree

Algorithm: CT-Apriori algorithm

Input: CTDB (Compact transaction database) and min sup
(minimum support threshold).

Output: F (Frequent itemsets in CTDB)

1: F1 � {{i} | i ∈ items in the head of CTDB}

2: for each X,Y ∈ F1, and X<Y do

3: C2 � C2 ∪ {X∪Y }

4: end for

5: k � 2

6: while Ck ≠ θ do

7: for each transaction T in the body of
CTDB do

8: for each candidate itemsets X ∈
Ck do

9: if X ⊆ T then

10: count[X] �
count[X] + count[T]

11: end if

12: end for

13: end for

14: Fk � {X | support[X] � min sup}

15: for each X,Y ∈ Fk, X[i]=Y [i] for 1�i�k
and X[k]<Y [k] do

16: L � X ∪ {Y[k]}

17: if ∀J ⊂ L, |J| = k : J ∈ Fk then

18: Ck+1 � Ck+1 ∪ L

19: end if

20: end for

21: k � k + 1

22: end while

23: return F = UkFk

A.B. Dhivya et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 8-15

���������	
	�������������������� � �

� �

Figure 4. CFP-Tree

To mine the frequent patterns from the transaction, two
additional columns are compared to the HeaderTable of the
FP-Tree. These are the frequency count of each item and an
index that renames the items arranged in the descending order
of frequency. Each node of the CFP-Tree contains an array of
counts for item subsets in the path from the root to that node.
The index of the cells in the array corresponds to the level
numbers of the nodes above. The number of nodes in the FP-
Tree is twice that of the corresponding CFP-Tree.

Mining the CFP-Tree using CT-PRO: To mine all frequent
patterns in the transaction tree using the CFP-Tree, the
pointers in the HeaderTable are used as the starting points.

In CT-PRO, for each frequent item f, only one local CFP-Tree
is created and traversed non-recursively to extract all frequent
patterns beginning with f. By doing this, the cost of creating
conditional FP-Trees is avoided as in FP-Growth.

1. /*Input: database Output: HeaderTable*/

2. Procedure ConstructHeaderTable
3. For each transaction in the database
4 For each item in a transaction
5 If item in HeaderTable
6 Increment count of item in HeaderTable
7 Else
8 Insert item into HeaderTable with count = 1
9 End If
10 End For
11 End For
12 Delete infrequent items and sort HeaderTable in

descending order
13 Assign an index for each frequent item

14 /* Input: database, HeaderTable, min_sup Output:
Global CFP-Tree */

15 Procedure ConstructTree
16 Build_LeftMost_Branch_of_the_Tree()
17 For each transaction in the database
18 Initialize mappedTrans
19 For each frequent item in the trans
20 /*get index of items from HeaderTable*/
21 mappedTrans = mappedTrans È GetIndex(item)
22 End For
23 Sort(mappedTrans)
24 InsertToTree(mappedTrans)
25 End For

26 Procedure InsertToTree(mappedTrans)
27 firstItem = mappedTrans[1]
28 currNode = root of subtree pointed by

HeaderTable[firstItem]
29 For each subsequent item i in mappedTrans
30 If currNode has child representing i
31 increment count[firstItem-1] of the child node
32 Else
33 create child node and set its count[firstItem-

1]=1
34 Organise the same-item-node-link
35 End If
36 End For

Figure 5. Algorithms for Constructing CFP-Tree

A.B. Dhivya et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 8-15

���������	
	�������������������� � �
�� �

(a) Local FP-Tree 5 (b) Frequent Patterns in Projection 5

(c) Local FP-Tree 4 (d) Frequent Patterns in Projection 4

(e) Local FP-Tree 3 (f) Frequent Patterns in Projection 3

(g) Local FP-Tree 2 (h) Frequent Patterns in Projection 2

Figure 6. Local CFP-Tree during Mining Process

Frequent Pattern Mining In Web Log Files: While
considering web log files, the main aim is to find the frequent
pages visited at the same time, and to discover the page
sequences visited by users. The results obtained by the
application can be used to form the structure of a portal,
satisfactorily for advertising reasons and to provide a more
personalized Web portal.

RESULTS AND DISCUSSION

The results obtained for the research work entitled “A Study
on the Applicability of Compact Transaction Database using
CT-Apriori and Compressed Trees using CT-PRO for Pattern
Mining” is discussed in this section.

Test Datasets

The two models selected were tested with two types of
datasets. One is the synthetic data which mimic the market
basket database and other is the web data which belong to a

web log databases. The synthetic data sets used in
experiments were generated using the procedure described by
[10]. These transactions mimic the actual transactions in a
retail environment.

Table IV. Parameters Used In The Synthetic Data Generation
Program

PARAMETERS MEANING

|D| Total number of transactions

|T| Average size of transactions

|I| Average size of maximal potentially
frequent itemsets

|L| Number of maximum potentially frequent
itemsets

N Total number of items

Table V. Parameter Settings of Synthetic Data Sets

TRANSACTION DATABASE |T| |I| |D|

T5I4D50K 5 4 50k

T10I8D100K 10 8 100k

T15I10D100K 15 10 100k

T20I12D200K 20 12 200k

T20I12D300K 20 12 300K

Performance Metrics

While evaluating the algorithms used, compression ratio was
considered to be the most important performance metric.
Compression ratio is defined as the ratio between the original
transaction database size to the compact database size. The
compression results with regard to number of association rules
were also analyzed.

Apart from storage space required to store the resultant
database, the amount of memory utilized during execution
also plays a vital role during evaluation. The result of this
metric can be used to evaluate the memory utilization
complexity of the proposed algorithms.

 Time taken to generate the association rules and mine
frequent patterns was another parameter that was considered
during evaluation.

Results

The results of the various experiments are presented and
discussed in this section.

Compression Ratio: The compression result in terms of
storage size is shown in Tables VI Table VII shows the

A.B. Dhivya et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 8-15

���������	
	�������������������� � �
�� �

compression performance in terms of number of association
rules generated.

Table VI. Compression ratio in terms of database size

Transaction
Database

Original
Size

(KB)

CT-Apriori CT-PRO

Compressed
Size

(KB)

Ratio

(%)

Compressed
Size

(KB)

Ratio

(%)

T5I4D50K 1,786 1,430 80.07 1,321 73.96

T10I8D100K 5,013 4,799 95.73 4,672 93.20

T15I10D100K 8,642 7,652 88.54 7,109 82.26

T20I12D200K 16,948 13,987 82.53 13,045 76.97

T20I12D300K 21,315 17,009 79.80 16,178 75.90

Web Data 545 344 63.12 287 52.66

Average Compression Ratio 81.63 75.83

Table VII. Compression Ratio In Terms Of Number Of
Transactions

From the results, it could be seen that both the algorithms are
efficient in generating a compact version of the original
database.While considering the web log data the algorithms
were able to achieve more compression when compared to
synthetic dataset. The results show that the compact
transaction databases provide effective data compression.

Execution Time: The overall system performance is analyzed
by comparing the average time taken by the selected
algorithms. Table VIII presents the average time taken for
synthetic datasets and web log data for various support
thresholds.

Table VIII. Average Time Taken(Seconds)

Dataset Apriori CT-Apriori FP-Growth CT-PRO

T5I4D50K 214.75 180.75 186.75 159.00

T10I8D100K 302.25 265.50 272.5 237.75

T15I10D100K 343.00 315.75 297.5 268.50

T20I12D200K 396.75 362.50 350.5 325.50

T20I12D300K 439.75 409.75 394.50 351.75

Web Data 3.65 2.88 3.23 2.53

From the data projected in Table, showing the execution
speed performance curves, it is evident that CT-PRO performs
better than all the algorithms in all situations. Both CT-
Apriori and CT-PRO outperforms their base algorithms
Apriori and FP-Growth. The performance gap between CT-
Apriori and CT-PRO is more prominent at lower thresholds.

Execution time while using synthetic database is shown in
Figures 7, 8, 9, 10 and Figure 11 shows the execution time for
web log data.

100

120

140

160

180

200

220

240

260

280

0.2 0.4 0.6 0.8

Support Threshold

T
im

e
 (

S
e
c
o

n
d

s
)

Apriori CT-Apriori FP-Growth CT-PRO

Figure 7: T5I5D50K

Transaction
Database

Original
Size

CT-Apriori CT-PRO

Compressed
Size

Ratio
Compressed

Size
Ratio

T5I4D50K 50,000 37,878 75.76 36,077 72.15

T10I8D100K 1,00,000 86,928 86.93 85,765 85.77

T15I10D100K 1,00,000 89,347 89.35 87,621 87.62

T20I12D200K 2,00,000 1,62,421 81.21 1,46,411 73.21

T20I12D300K 3,00,000 2,41,931 80.64 2,11,113 70.37

Web Data 32,711 11,233 34.34 9,519 29.10

Average Compression Ratio 74.70 69.70

A.B. Dhivya et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 8-15

���������	
	�������������������� � �
�� �

150

200

250

300

350

400

450

500

0.2 0.4 0.6 0.8

Support Threshold

T
im

e
 (

S
e

c
o

n
d

s
)

Apriori CT-Apriori FP-Growth CT-PRO

Figure 8: T10I8D100K

250

300

350

400

450

500

0.2 0.4 0.6 0.8

Support Threshold

T
im

e
 (

S
e

c
o

n
d

s
)

Apriori CT-Apriori FP-Growth CT-PRO

Figure 9. T20I12D200K

250

300

350

400

450

500

550

0.2 0.4 0.6 0.8

Support Threshold

T
im

e
 (

S
e

c
o

n
d

s
)

Apriori CT-Apriori FP-Growth CT-PRO

Figure 10. T20I12D300K

1

1.5

2

2.5

3

3.5

4

4.5

5

0.2 0.4 0.6 0.8

Support Threshold

T
im

e
 (

S
e

c
o

n
d

s
)

Apriori CT-Apriori FP-Growth CT-PRO

Figure 11. Web log Data

These results indicate that the performance of CT-PRO
algorithm in terms of compactness achieved, in terms of
storage size, number of transactions and execution speed with
different datasets is efficient when compared with all the other
algorithms.

SUMMARY AND CONCLUSION

The CT-Apriori algorithm uses a compact tree structure,
called CT-tree, to compress the original transactional data.
The tree representation allows the CT-Apriori algorithm,
which is revised from the Apriori algorithm, to generate
frequent patterns quickly by skipping the initial database scan
and reducing a great amount of I/O time per database scan.
The CT-PRO algorithm uses a compact tree structure called
CFP-Tree, which is more compact than the FP-Tree of the FP-
Growth algorithm. An algorithm called CT-PRO is used to
mine frequent patterns from CFP-Tree. The CT-PRO
algorithm divides the CFP-Tree into several projections
represented by CFP-Trees. Then CT-PRO conquers the CFP-
Tree for mining all frequent patterns in each projection. The
execution speed results also indicated that the CT-PRO
algorithm was the fastest among all the algorithms. All
these results point CT-PRO as the right candidate for
generating a compact version of the original transaction
database, which is small in size and which performs frequent
pattern mining in a fast and efficient manner.

REFERENCE

1. Agrawal, R., Imielinski, T., and Swami, A. (1993)
Mining association rules between sets of items in large
databases, Buneman, P. and Jajodia, S., editors,
Proceedings of the ACMSIGMOD International
Conference on Management of Data, ACM Press, Pp.
207–216,Washington.

2. B. Liu, W. Hsu, and Y. Ma, "Integrating Classification
and Association Rule Mining," Proceedings of ACM
SIGKDD, New York, NY, 1998.

3. K. Wang, X. Chu, and B. Liu, "Clustering Transactions
Using Large Items," Proceedings of ACM CIKM, USA,
1999.

4. R. Agrawal and R. Srikant, "Fast Algorithms for Mining
Association Rules," Proceedings of the 20th International

A.B. Dhivya et al, Journal of Global Research in Computer Science, 1 (2), September 2010, 8-15

���������	
	�������������������� � �
�� �

Conference on Very Large Data Bases, Santiago, Chile,
1994.

5. J. Han, J. Pei, Y. Yin, and R. Mao, "Mining Frequent
Patterns without Candidate Generation: A
Frequentpattern Tree Approach," Data Mining and
Knowledge Discovery: An International Journal, Kluwer
Academic Publishers, vol. 8, pp. 53-87, 2004.

6. R. Agarwal, C. Aggarwal, and V. V. V. Prasad, "A Tree
Projection Algorithm for Generation of Frequent
Itemsets," Journal of Parallel and Distributed Computing
(Special Issue on High Performance Data Mining), 2000.

7. C. Borgelt, "Efficient Implementations of Apriori and
Eclat," Proceedings of the IEEE ICDM Workshop on
Frequent Itemset Mining Implementations, Melbourne,
USA, 2003.

8. J. Liu, Y. Pan, K. Wang, and J. Han, "Mining Frequent
Item Sets by Opportunistic Projection," Proceedings of
ACM SIGKDD, Edmonton, Alberta, Canada, 2002.

9. W. Cheung and O. R. Zaiane, "Incremental Mining of
Frequent Patterns without Candidate Generation or
Support Constraint," Proceedings of Seventh
International Database Engineering and Applications
Symposium (IDEAS2003), Hong Kong, China, 2003.

10. Agrawal, R. and Srikant, R. (1994) Fast algorithms for
mining association rules in large databases, In Jorge B.
Bocca, Matthias Jarke, and Carlo Zaniolo, editors,
Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB, Santiago, Chile, Pp. 487-499.

11. Bayardo, R.J. (1998) Efficiently mining long patterns
from databases, Proceeding of the 1998 ACM-SIGMOD
International Conference on Management of Data
(SIGMOD’98), Seattle, WA, Pp 85–93.

12. Bell, T., Witten, I.H. and Cleary, J.G. (2009) Modelling
for Text Compression, ACM Computing Surveys, Vol.
21, No.4, P.557.

