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INTRODUCTION
Basically, no country is completely economically independent. Every country must depend on one or several countries for 

her economic growth. All nations are inter-dependent, because they have limited resources and have to trade with each other to 
satisfy their wants. This implies that the analysis of economic variables such as gross domestic product (GDP), inflation, exchange 
rates etc. are of paramount importance to any nation’s growth. Unfortunately in most African countries, less attention is paid to 
the study and monitoring of the rise and falls of these essential and sensitive variables. A volatile or inappropriate exchange rate 
has been a major hindrance to the growth of many African countries which Ghana is inclusive Appiah and Adetunde [1].

Exchange rates vary largely according to extent and nature of each country’s exposure to trade and global financial markets. In 
some stable economies, exchange rates of currencies compete favorably while the developing economies appear to be influenced 
heavily by the developed ones. This is because, the less developed countries receives less attention concerning exchange rate 
compared to the developed or industrialized economies [2].

The currencies of many sub-Saharan African countries faced depreciations with respect to US Dollar at the onset of the 
global financial crisis. According to Ltaifa, et al. [3], five countries: Ghana, Kenya, Nigeria, Uganda and Zambia depreciated by at 
least 20% between June 2008 and March 2009; while Tanzania and Rwanda depreciated by10% or less during same period. 

According to Jeffrey [4], Argentina being the victim of the worst market financial crisis in 2001; experienced problems in the 
late 1990’s and the situation became severe because of its link with a particular currency, the US Dollar. The Dollar gained value 
over other major currencies beginning in the mid-1995, and caused the market for Argentina’s important agricultural export 
products (wheat, meat and soya beans) to decline sharply. Thus, the decline in the prices of these commodities expressed in 
Dollar was particularly dramatic. All these put together, led to sharp increase in the ratio of debt to exports. 
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ABSTRACT

This work aims at modelling the Naira exchange rates for US Dollars 
Xt and Swiss Franc Yt using a transfer function (TF) technique. Data for the 
two currencies were obtained from the Central Bank of Nigeria (for a period 
of 53 years). After obtaining stationarity of the two series using appropriate 
transformation, the input series xt was pre-whitened to remove the spurious 
correlation effect. The output series yt was also pre-whitened and the cross 
correlation between the pre-whitened input (αt) and output (βt) was examined. 
From the behavior of the cross correlation, rational polynomial representation 
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 of the dynamic transfer function was obtained. The estimated 

noise ( )tn̂  was found to be auto correlated. Thus, the noise was modelled 
separately using Box and Jenkins autoregressive (AR) method. This provided 
the missing component of the TF model which was used to fit the overall 
model. The resulted model underwent a diagnostic check and was found to 
be appropriate. Hence forecast was generated.
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Some earlier studies suggest that instability in exchange rate has the potential to affect a country’s economic performance. 
In Nigeria, the value of Naira has depreciated significantly compared with other currencies due to poor economic management, 
political system and other unknown factors. However, a close observation of the Naira exchange rate for US Dollar and Swiss 
Franc shows that the two currencies are highly related. Thus, studying the behavior and relationship of these two currencies in 
relation to Naira can provide useful information for the economy of the two Countries (USA and Switzer Land) and Nigeria at large. 
This work therefore, intends to build a model that establishes the relationship between the two currencies (US Dollar and Swiss 
Francc) in relation to Nigeria’s currency (Naira). The model is called the transfer function model.

Transfer function model (TFM) is a statistical model describing the relationship between an output variable and one or 
more input variables [5]. TFM can be a single equation or multiple equation model, which the latter could be referred to as 
a simultaneous transfer function (STF) model [6-8]. Some authors will prefer to distinguish the two models as single-input and 
multiple-input transfer function models. In most applications, linear equation is used to describe the relationship resulting from 
the distributed-lag model. 

Elkhtem, et al. [9] considered the nature of crude oil as a mixture of hydrocarbons with different boiling temperatures. Control 
became essential for the fractionation column to keep products at the limitations. The paper revealed the identification of transfer 
function for relevant different developed control strategy and relevant transfer function were identified using MATLAB Software.

A Work on forecasting foreign exchange by Znaczko [10] investigated a transfer function model with multiple variables.  The 
study revealed that the best forecast of foreign exchange rates depends on current and past prices. 

Kannan and Farook [11] fitted a transfer function model to global warming entities such as atmospheric temperature, and 
atmospheric CO2 emissions. A strong relationship was demonstrated between annual atmospheric CO2 emissions and present/
past atmospheric temperature.

Practically, the output is not a deterministic function of the input. Transfer function model is quite different from the ARIMA 
model. The latter is a univariate time series model while the transfer function model is a multivariate time series model. The 
ARIMA model relates the series only to its past, but beyond this indication, the transfer function model will relate the series to 
other time series [12]. Due to the close relationship with the regression models, the transfer function models are also referred to 
as dynamic regression models [13]. The transfer function models can use more than one explanatory variable, but the explanatory 
variables must be linearly independent of each other [14]. 

Transfer function approach as a method of data analysis, has been in use for some decades. Virtually every field of study 
has demonstrated the importance and relevance of the transfer function approach especially in its ability to enhance forecast 
based on relating different series. In a stable economic trend, such model can enable a researcher or planner to predict favorable 
chances an indigenous economy stands amidst higher ones in the global market. 

In time series analysis, the Box-Jenkins method describes the transfer function model as a model that predicts future values 
of a time series (output series) from past values of same series and one or more related series (input series). 

In this work, however, we intend to apply the Box-Jenkins method and the pre-whitening approach to build a transfer function-
AR noise model of Naira exchange rates for the US Dollar and Swiss Franc. In our method, the leading indicator is identified and 
the noise component is modeled separately and added to the dynamic relationship between the input and output series. The 
resulting noise is found to satisfy its basic assumptions [ 2

t NIID(0, )áε  ] thus showing that the model is adequate.  

METHODOLOGY
Let  Xt  and  Yt   be two time series. 

Stationarity

The time series Xt is said to be stationary if the statistical properties are essentially constant through time. In other words, 

( )tE X = µ  and 2( ) .tVar X = σ  In this work, stationarity is obtain by differencing. That is, t t t 1x X X −= − .

Pre-Whitening

Pre-whitening approach involves finding autoregressive integrated moving average (ARIMA) model for Xt that yields white 
noise residuals while the functional relationship between the Xt and Yt is still maintained.

For this work, an ARIMA (p,d,o) model is identified and we have

t 1 t 1 p t p tx x   x   − −= φ + +φ α+

Rewriting the equation, the residuals or the pre-whitened input  is obtained as

t t 1 t 1 x {ˆ }x  −α = − φ +

The yt is substituted for xt to get the filtered equation for the pre-whitened output as:
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t t 1 t 1 p t p   y { yˆ y }− −β = − φ +…+φ  
By pre-whitening, cross correlation accurately reflects the structure of the impulse function [15]. Here, α and β represent the 

pre-whitened input and output series respectively. 

Cross Correlation 

The cross correlation for lag k is given as 
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Wher  x  and y  are the sample means of xt and yt, st and sy are the sample standard deviations respectively.

Transfer Function Model

The dynamic relationship between input series Yt and output series Xt is usually approximated by a linear transfer function
t  0 t 1 t 1 ty v x n ,v x −= + +…+

( ) t tv B x n= +   

Where '
jv s  are the transfer function weights and  is a noise term. Estimates of the transfer function weights can be 

calculated from

( )áâ â
j

r j s
v   ,        j 0,  , k  

s
ˆ

α

= = … ; (3.13) 

Where sα and sβ are the estimated standard deviations of the pre-whitened input and the output data respectively.  is the 
estimated cross correlation between the pre-whitened input and output. Insignificant weights are rounded off to zero. B denotes 
the backshift operator such that m

t t m,B X  X −=
The function v (B) determines the impact of input Xt on yt; and
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Thus,  can be represented as
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According to Box and Jenkins [16], the parameters in v (B) are estimated by the equation 

( ) ( ) ( )B v B  Bδ = ω

Explicitly, it can be expressed as,

( )( ) ( )r 2 s b
1 r 0 1 2 0 1 s1 B B v v B v B   B B B− δ −…−δ + + +… = ω −ω −…−ω

The parameters r, b, s, represent  the order of the numerator polynomial , the delay parameter that indicates the time lag 
until  input affects the output also called dead-time or delay time,  and order of the denominator polynomial respectively . 

The Autoregressive (AR)-Noise Model

In the model identification, v (B) parameters are obtained and fitted; and the noise term nt is added. In this concept, however, 
it is believed that the noise nt could be serially correlated; thus violating its assumption. The noise is then modeled separately 
using Box and Jenkins method as:

( ) ( )
t

t t t B n n
B
ε

φ = ε ⇒ =
φ

Where,
( ) ( )2 p

1 2 pB 1 B B Bφ = − φ − φ −…−φ

and  is the autoregressive order of nt  and фi’s are the autoregressive parameters.

Thus the resulting model is:
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   and   is found to be serially uncorrelated as expected.

Data Analysis and Results

The analysis of the data available for this thesis was carried out using Minitab software. Data used was secondary data with 
fifty three observations each (1960-2013). We intend to build a transfer function -AR noise model which could be used for future 
forecast of the naira exchange rate for the two currencies. Let Xt denotes the Naira exchange rate of US Dollar and Yt, the Naira 
exchange rate of Swiss Franc

In the language of our study, Xt is the input series and Yt the output series. 

Raw Data Plot

Figure 1 (appendix) demonstrates the combined raw data plot for Xt and Yt.
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Figure 1. Raw data plot of   and .

From these plots, it is observed that the series are not stationary. This demanded for an appropriate transformation to make 
them stationary.

Correlation of the Two Series   

The correlation between Xt and Yt gives 0.996. This value indicates a strong positive relationship between the two series. 
This is also evident in Figure 1.

Differencing

Xt and Yt were both differenced once to obtain stationarity.

Model Identification for the Input Series Xt

 An ARIMA (1,1,0) was identified for the Xt resulting in the model:

( )( ) t t1 0.086B 1 B X− − = α

Pre-Whitening of Xt and Yt

From the above model, the pre-whitened Xt is: 
t t t 1 t 1 t 2 X X 0.0862X 0.08ˆ 6X− − −α = − − +

and that of Yt

t t t 1 t 1 t 2Y Y 0.0862Y 0.08ˆ 6Y− − −β = − − +

Cross Correlation Function for αt and β t

The cross correlation of the pre-whitened series rαβ are seen in Figure 2 below. Since the rαβ at lag  and  are not statistically 
significant, the weights v0 and v1 are systematically equal to zero. Thus from the figure; b=2, s=1 and r=2. In addition, since 

( )r kαβ −  are not statistically different from zero; it means the present values of  are related to the past values of Xt and not 

otherwise. Hence, Xt is the leading indicator. The four transfer function significant weights are shown in Table 1 below with their 
respective cross correlations and lags.

Identification of the Transfer Function Parameters

We had earlier expressed in methodology that:. ( ) ( ) ( )B v B  Bδ = ω

That is, ( )( ) ( )r 2 s b
1 r 0 1 2 0 1 s1 B B v v B v B   B B B− δ −…−δ + + +… = ω −ω −…−ω

Substituting b=2, s=1 and r=2, we have
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             -1.0 -0.8 -0.6 -0.4 -0.2  0.0  0.2  0.4  0.6  0.8  1.0 
             +----+----+----+----+----+----+----+----+----+----+ 
-17  -0.017                             X 
-16  -0.028                            XX 
-15  -0.058                            XX 
-14  -0.040                            XX 
-13   0.029                             XXX 
-12  -0.071                          XXXX 
-11  -0.044                            XX 
-10  -0.013                             X 
 -9  -0.039                            XX 
 -8  -0.079                           XXX 
 -7   0.157                             XXXXX 
 -6   0.233                             XXXXXX 
 -5   0.228                             XXXXX 
 -4  -0.086                           XXX 
 -3  -0.049                            XX 
 -2  -0.024                            XX 
 -1  -0.071                           XXX 
  0  -0.067                           XXX 
  1   0.023                             XX 
  2   0.837                             XXXXXXXXXXXXXXXXXXX 
  3   0.998                             XXXXXXXXXXXXXXXXXXXXXX 
  4   0.776                             XXXXXXXXXXXXXXXX 
  5   0.629                             XXXXXXXXXXXXXX 
  6   0.191                             XXXX 
  7  -0.137                           XXX 
  8  -0.220                        XXXXXX 
  9  -0.164                          XXXX 
 10   0.074                             XXX 
 11   0.036                             XX 
 12  -0.013                             X 
 13  -0.044                            XX 
 14  -0.074                           XXX 
 15   0.023                             XX 
 16  -0.004                             X 
 17  -0.060                           XXX 

Figure 2. Cross Correlation function (CCF) for , 

Lag         Cross Correlation      Weight ˆ
jV

0 0 0
1 0 0
2 0.837 0.5750    
3 0.998 0.6856
4 0.776 0.5331
5 0.629 0.4321
6 0 0

Table 1. Cross Correlation and Transfer Function Weight.
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Solving the above equation, we have

δ1=0.7157, δ2=0.5750, ω0=0.5750; ω0= - 0.2741,

 
( )

2 3

2

0.5750B 0.274Bv B
1 0.7157B 0.0737B

+
⇒ =

− −

Estimation of the Noise nt

The noise  is estimated as

ˆ ŷ y  tt tn = −

t   1 t 1 2 t 2 r t r 0 t b 1 t b 1 s t b s y ( y y y x xˆ ˆ ˆ ˆ xˆ ˆˆ ˆ ˆ )− − − − − − − − −= δ + δ …+ δ +ω −ω …−ω

( )t   t 1 t 2 t 2 t 3  y 0.715y 0.0737y 0.575ˆ ˆ x 0.274x− − − − −= + + −

Model Identification for the Noise Series nt 

Autocorrelation and partial autocorrelation function for nt: The autocorrelation function decays exponentially to 0, while 
the partial autocorrelation function cut off after lag 1 (Figures 3 and 4). Thus the identified model is ARIMA (1,0,0) which is 
equivalent to AR(1) (Table 2). 
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Figure 3. Autocorrelation function for nt..
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Figure 4. Partial autocorrelation function for nt.

Parameters   Estimate   p-Value
ω0 0.52 0.000
ω1 -0.24 0.009
δ1 0.69 0.000
δ2 0.04 0.003
φ1 0.55 0.000

Table 2. The parameter estimates for the model.

Writing the model explicitly, we have 

( )p t t B n  φ = ε

So that ( )1 t t1 B n−φ = ε

and t t
1

1n  
1 B

= ε
− φ

The Transfer Function-AR Noise Model

Combining the two models, we have

( )t t ty v B x n= +

 

( )
( )

b

t t t

B B
y x n

B
ω

= +
δ

0 1
t t b t2

11 2

B 1y x   
1 B1 B B −

ω −ω
= + ε

− φ− δ − δ

The final transfer function-AR noise model is obtained as;

0 1
t t 2 t2

11 2

B 1y x
1 B1 B B φ−

ω −ω
= + ε

−− δ − δ

Where t t t 1 t t t 1x X X  and y Y Y− −= − = −
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DIAGNOSIS
To check for model adequacy, the following diagnostic check was applied. 

Autocorrelation Function for the Residual εt

The autocorrelation function of the residual term εt (Figure 5) below demonstrates no particular pattern or spikes. No 
autocorrelation is significant.  This indicates that the residual follows a white noise process. Hence the fitted model is adequate.
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Figure 5. Partial autocorrelation function for εt.

Forecasting

Having tested the adequacy of the transfer function AR noise model and was found to be appropriate; next is to generate 
forecasts. The forecasts of the next ten years are presented in Table 3.

Period Forecast Lower Upper
54 148.103 132.110 163.096
55 148.152 127.194 168.110
56 148.270 124.189 170.351
57 149.101 121.117 176.085
58 149.206 121.260 176.152
59 149.281 121.401 176.161
60 149.474 121.672 176.276
61 150,690 119.310 181.070
62 152.215 119.517 183.913
63 152.410 119.708 184.112

Table 3. Forecasts from period 54 at 95 percent limits.

SUMMARY/CONCLUSION
This work provides a solution to a dynamic relationship where the residual fails to follow a white noise process or violate its 

usual assumptions. The work modeled the residual obtained from fitting the transfer function (TF) model separately. The ARIMA 
model obtained from the TF noise is added to the major component of the model resulting in transfer function autoregressive-
noise model. Data from naira exchange rate of US Dollars and Swiss Franc (1970-2013) was used to demonstrate the workability 
of the model. The model was found to be appropriate and forecasts for the Naira exchange of Swiss Franc were generated using 
the model.
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