
Volume 2, No. 6, June 2011

Journal of Global RJournal of Global RJournal of Global RJournal of Global Research in Computer Scienceesearch in Computer Scienceesearch in Computer Scienceesearch in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info�

© JGRCS 2010, All Rights Reserved 93

A VALIDATION OF SIM-A WITH OVPSIM

Gajendra Kumar Ranka*1, Dr. Manoj Kumar Jain2
1Research Scholar, Department of Computer Science, MLSU University, Udaipur

Gajendra_ranka@hotmail.com
2Associate Professor, Department of Computer Science, MLSU University, Udaipur

manoj@cse.iitd.ernet.in

Abstract: The design of modern embedded systems requires automated modelling tools for faster design and for the study of various design tradeoffs. Such tools
put together constitute an integrated environment where the designer can write the high level design specifications in a language and use these tools for automatic
generation of system specific tools.
The major contribution of this paper lies in design and development of retargetable simulator and validation of the simulator with different simulators like
OVPSim {Open Virtual Platform}. Proposed simulator measures cycle count for application executed on processor. This paper discusses the OVP Simulators, its
working and the different customisations that are required to execute the benchmark application on this Simulator.

Keywords: ASIP, Application Specific Instruction Processors, Retargetable Simulator, Embedded Systems, Processors, ASIP Simulators, Design Space
Exploration, OVP Simulator

.

INTRODUCTION

Modern electronics are controlled by processors that must
meet strict constraints in terms of performance, cost, size
and power consumption. In a competitive market place,
performance and cost are critical in differentiating one
product from another. In addition, low cost and superior
performance increases the likelihood of broad consumer
acceptance of new electronic products. Size constraints limit
the amount of functionality that can be incorporated into
product design. Finally low power consumption is necessary
for portable electronic equipment that is battery operated.

An ASIP is a processor that is designed to efficiently
execute the software for a specific application. Regardless of
whether a newly designed ASIP or a pre-existing processor
core is used, the selected processor should be well suited for
the given application. Although incorporating a complete
system on a single IC may improve performance, cost, and
power consumption requirements, such a high level of
integration constraints the size of the system components.

Steps in ASIP Synthesis

Various methodologies have been reported to meet these
requirements. All these have been studied and five steps are
suggested for synthesis of ASIPs [1]

Application Analysis:

Application is normally written in High level language.
Proper analysis of this application under consideration is
done and the output of the information is stored in some
suitable intermediate format. Sometimes SUIF can be used
as intermediate format. Analysis of the application is
essential as it provides the essential requirement from the
application that can guide for hardware synthesis as well as
instruction set generation.

Architectural Design Space Exploration:

Output of the Application analysis step along with the range
of architecture for Design Space Exploration is used to

select a suitable architecture. Possibility of suitable
architecture is explored and the best architecture is selected
that satisfy the different characteristics like minimum
hardware cost, performance and power.

Instruction Set Generation:

Till this step we have identified application requirements
and the suitable architecture. Based on this input instruction
sets are generated in terms of required micro operation. This
instruction set is used during the further steps for code
synthesis and hardware synthesis.

Code Synthesis:

Till this step, architecture template, instruction set, and
application are identified. This step generates the code.
Generated code can be retargetable code generator or
compiler generator.

Hardware Synthesis:

In this step the hardware is generated using the ASIP
architectural template and instruction set architecture using
standard tools

Architecture Design Space Exploration

System on Chip designs has various goals and objectives.
Design space consists of a set of parameters. The main focus
of designers lies on minimal cost and maximal performance,
low power, high reliability etc. Architecture under
consideration requires a range of good parameter to explore.

These parameters may take up the different values. Some of
the parameter suggested can be functional unit of different
type, Storage units, interconnect resources, number of
memory units etc. Further the parameters can also be
extended to size of instruction cache and size of data cache.
This has been a very crucial step for ASIP design. Design
Space exploration helps the SOC designers to make the
trade-offs between these goals and arrive at the "optimal"
design. Designers explore changes to the architecture or the
instruction-set of the processor-memory system. Designers

Gajendra Kumar Ranka et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 94

select a suitable architecture that satisfy the performance and
power constraint and having minimum hardware cost.
Architecture is defined using some suitable architecture
description language (ADL).

Techniques for Performance Estimation

Two major techniques have been used for performance
estimation. They are scheduler based and simulator based.
In Scheduler based approach, application is scheduled to
generate the output like cycle count. Architectural
component is already identified at this stage. Target
processor architecture can be given in the form of
description file.

In Simulator based approach, application under
consideration runs on a simulator. Depending upon the
architecture selected in above steps, application is simulated
to compute the performance.

Processor Models are extensively used in system design
process. The system design process starts with an
application and its implementation. Then the model is tested
for its performance and other aspects. In such a scenario an
integrated environment is required for the designer where
several tools exist like simulator, assembler, compiler etc.
Rewriting the tools after each design change is a tedious job.
Hence automatic generation of these tools is more desirable
according to the design changes.

Existing Retargetable Simulators Approaches

Retargetable functional simulator (Fsimg) [2] focus on tools
that deal with the machine language of processors, like
assemblers, disassembler, instruction set simulator
etc.Retargetable Function Simulator (Fsimg) was designed
using Sim-nML language which is primarily an extension of
the nML [3] language for processor modeling. Fsimg takes
the specification of the processor in the intermediate
representation [4] and an executable for the processor in
ELF [5] format and generates a functional simulator (Fsim)
which in turn gives the functional behaviour of the processor
model for the given program.

REALTED WORK

Over the past several decades a considerable amount of
research has been performed in the area of computer
architecture simulation. These simulators can be broadly
divided into several categories: full-system simulators,
Instruction Set Architecture (ISA), and retargetable
Simulators. Each category serves an entirely different
purpose, but all have been used for the advancement of
computer architecture research.

The purpose of full-system simulators is to model an entire
computer system including the processor, memory system
and any I/O. These simulators are capable of running real
software completely unmodified just like a virtual machine.
There are many simulation suites that take this approach,
including PTLSim [6], M5 [7], Bochs [8], ASIM [9],
GxEmul [10] and Simics [11]. Simics has several extensions
that constitute their own full-system simulators such as
VASA [12] and GEMS [13].

ISA simulators are less descriptive than full system
simulators. Their objective is to model processor alone.ISA
simulators performs the various functionalities.

It simulate and debug machine instructions of a processor
type that differs from the simulation host, it also emphasis
on investigating how the various instructions (or a series of
instruction) affect the simulated processor. Hence modeling
of the full computer system is unnecessary and would
impose additional delay and complexity. Example of this
type of simulator includes SimpleScalar [14], WWT-II [15],
and RSIM [16]. Over the past decade, a few interesting
ADLs have been introduced together with their supporting
software tools. These ADL include MIMOLA, UDL/I, nML,
ISDL, CSDL, Maril, HMDES, TDL, LISA, RADL,
EXPRESSION and PRMDL.

CHALLENGES IN ASIP DESIGN

The development of a processor is a complex task, involving
several development phases, multiple design teams and
different development languages. The key phase in
processor design is architecture specifications since it serves
as the basis for all remaining design phases. Although
Hardware Description Languages (HDLs) are designed for
architecture implementation, in a traditional design flow,
these languages are also often used for the initial
specification of the processor. In this design phase tasks,
such as hardware/software partitioning, instruction-set and
micro-architecture definition is performed. Based on the
architecture specification, both the hardware implementation
and development of software is triggered. Both tasks are
basically independent and therefore performed by different
experts and design methodologies.

Hardware designers use HDLs such as VHDL or Verilog,
while software designers mostly utilize the C/C++
programming language. In addition, the target processor
needs to be integrated into the SoC and the application
software needs to be implemented. Communication between
the design teams is obviously difficult because of the
heterogeneous methodologies and languages.
Considering the traditional processor design flow, the strong
dependencies between the design phases imply a
unidirectional design flow and prevent even minor
optimizations. Due to the different development languages,
changes to the architecture are difficult to communicate and
inconsistencies are very likely to appear.

The Complexity of processor design even increases in ASIP
design, since optimizations targeted to particular
applications are mandatory. Mapping an architecture to a
given application means moving through a design space by
axes such as flexibility, power consumption, clock speed,
area and more.

Every design decision in one dimension constraints other
decisions, for example Architectural features Vs design
time,
Design time Vs physical characteristics,
Physical characteristics Vs flexibility
Flexibility Vs verification effort
Verification effort Vs architectural features

Gajendra Kumar Ranka et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 95

It is obviously not possible to move through this design
space by applying the traditional processor design
methodology. A unified design methodology is required,
which provides a common basis for all design phases. It
must be suitable for all design engineers involved.

EXISTING RETARGETABLE SIMULATORS

Anahita Processor Description Language (APDL), APDL
[17] is one of the most recent contributions in the area of
retargetable simulator. The language was introduced in 2007
by N. Honarmand et al. from the Shahid Beheshti
University, IRAN. The Primary difference between APDL
and other ADLs is the addition of Timed Register Transfer
Level (T-RTL), which enables the simulation designer to
define the latencies and hardware requirement of the
processor operations. This separation of configuration data
enables APDL to better integrate with external software for
analysis as the T-RTL data is organized separately from the
remainder of the processor description. Moreover, APDL
can describe both instruction and structure descriptions of a
target processor.

The Pascal-like syntax of APDL is clearly more intuitive
than many other ADLs such as LISA and EXPRESSION.
While the language is easier to read and understand, the
researchers have not yet implemented a compiler to produce
simulations. Furthermore, despite APDL's relative ease,
users are still faced with the task of learning the details of
the syntax.

ISDL [18] was introduced in 1997 by G.Hadjiyiannis,
S.Hanono, and S. Devadas from Massachusetts Institute of
Technology. The purpose of ISDL was to provide a
language for describing instruction sets along with a limited
amount of details of a processor structure for the automatic
construction of compilers, assembler, and simulators. ISDL
enables users to define their target processors in several
ways. First, users can define operations, their format, and
the associated assembly language instruction. Second users
can define the storage resources available to the processor,
including the register file and memory. Third users can
define constraints in the processor such as instructions
requesting the same data path, or restrictions regarding
assembly syntax.

ReXSim [19] was introduced in 2003 by a computer
architecture research team at Irvine. ReXSim is an extension
of EXPRESSION language which sought to improve
simulation speed by integrating a novel method of decoding
instructions of the simulated program before execution of
the simulation. As a result, the instruction decoding process
was removed from the execution loop of the simulator, and
thus improved the simulation speed significantly. Using this
method, the team was able to produce retargetable
simulations that showed performance in excess of major
simulators like SimpleScalar, which is widely considered to
be a simulation performance benchmark.

Reduced Colored Petri Net (RCPN) [20] was introduced in
2005 by M.Reshadi and N. Dutta from University of
California, Irvine. RCPN takes a vastly different approach to
retargetable simulation, in which pipelines are modeled
using a simplified version of Colored Petri Nets (CPN). Petri

Nets are graph based mathematical method of describing a
process. The nodes of the graph represent particular discrete
events, states, or functions, and the graph edges represent
the transitions of data between nodes. The transitions can be
enabled or disabled based on conditions specified at the
nodes.

The purpose of RCPN is to provide retargetable simulations
for modeling of pipelined processors. RCPN reduces the
functionality of a regular CPN by limiting the capabilities of
the nodes in the graph for the purpose of increasing
simulation speed and usability. Additionally, RCPN takes
the advantage of some of the natural properties of CPNs to
prevent structural and control hazards.

Retargetable functional simulator (Fsimg) [21] focus on
tools that deal with the machine language of processors, like
assemblers, disassembler, instruction set simulator etc. The
objective was to have a single processor model for all the
tools. Hence Retargetable Function Simulator (Fsimg) was
designed using Sim-nML language which is primarily an
extension of the nML language for processor modeling.
Fsimg takes the specification of the processor in the
intermediate representation and an executable for the
processor in ELF.

Format and generates a functional simulator (Fsim) which in
turn gives the functional behaviour of the processor model
for the given program. Around 237 instructions have been
specified with the resource usage model and pipeline. Macro

Preprocessor (nMP) for processing Sim-nML macros is
implemented.

It has some limitation. Fsimg is imposing a strong restriction
on specification writing. Current bit-operator library
supports only integer data types. The trace produced by
Fsim is not compressed. It makes it difficult to handle and
process trace files. It is very slow.

The LISATek [22] processor design flow is based on LISA
2.0 processor models. Given a LISA model, the LISATek
tool is able to generate instruction-set simulators for the
processor under design. Typically, the debugger in form of a
dynamic library directly uses the generated simulator.
However, a compiled static simulator library is also
generated, and specifications exist to integrate it into the
system environment. The system environment would be the
MPARM. All the core models generated by the LISATek
suite, regardless of the nature of the ASIP at hand, have the
same interface. The interaction is based upon four key
pillars:

A. The simulated core can be cycled by calling specific
functions. If the processor is modelled in an instruction-
accurate fashion, then the generated model can be
stepped on an instruction basis. On the other hand, a
model derived from a cycle-accurate LISA description
can be stepped on both instruction and cycle basis.

B. Core-initiated communication (e.g. reads, writes) is
performed through a specific Application Programming
Interface (API). It is the task of the external program to
provide an implementation of said API.

C. System-initiated communication (e.g. interrupts), if any,
can be forwarded to the core when cycling it, and

Gajendra Kumar Ranka et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 96

therefore on a fine-grain cycle-by-cycle basis, by proper
flipping of extra pins. Of course the LISA core model
must be made aware of the meaning of these extra pins
to take proper action.

D. An external LISATek Debugger tool can be interfaced
to the core via the IPC (Inter-Process Communication)
mechanism. The external program must simply invoke
the Debugger with proper references; subsequently, the
LISATek model and the Debugger interact
autonomously.

The implementation of these function calls depends
completely on the communication method used in the
system. The implemented API will translate the requests
into SystemC signals which can be understood by the
MPARM [23] platform. The Assessment of the performance
of alternative hardware communication is not addressed.
Retargetability is poor.

All of these simulators use techniques to speed up the
execution of application programs. This is achieved by
minimizing the amount of details about the processor,
needed for program execution on the simulator. Even though
some of these previous approaches target ADL-based
automatic toolkit generation and DSE, not much work has
been done in bringing together these elements in an early
DSE environment. Furthermore, previous approaches are
restricted to certain classes of processor families and assume
a fixed memory/cache organization. For a wide variety of
such processor and memory IP library, the designer needs to
be able to specify and analyze the interaction between the
processor instruction set and architecture, and the
application and explore the different points in design space.

This problem is addressed in SIMPRESS simulators. The
EXPRESSION ADL captures both the instruction set and
architecture information for a design draw from an IP
library. The library contains a variety of parameterizable
processor cores and customizable memory / cache
organizations. Simpress produces a structural simulator
capable of providing detailed structural feedback in terms of
utilization, bottle-necks in the processor architecture. The
processor-system description is input using a graphical
schematic capture tool, called V-SAT, that outputs an
Expression Description which is fed into the toolkit
generators to produce DSE tools. The SIMPRESS generated
simulator provides feedback information which is back-
annotated to the same V-SAT graphical description.

Though SIMPRESS Simulators addresses many issues, it
has certain limitation. The application having function calls
are not supported. Compilation steps exist in three passes:
PcProGUI, Expression console, acesMIPS console.
Basically it is very complex to understand the process of
compilation and simulator. The Application needs .proc and
.def file. The .c program generates these files. There is no
clear cut method as how .c is converted to .proc and .def,
especially in case of windows environment. This is strong
limitation as we can not simulate our own program written
in .c. this has to be first converting to .procs and .defs and
for that we need to depend on their servers to provide for the
same, which is not functional right now.

In order to overcome all these complexities, we suggest a
simple and elegant solution. Just there is a need to provide
the standard application program in the form of scheduled
and optimized code along with the processor description to
our Simulator and you will get the cycle count as an output
of the simulation.

OVERALL APPROACH

Application or a set of application in the form of High Level
Language is taken as input and it given as input to
retargetable compiler.

Architecture description is also given input to retargetable
compiler. Retargetable compiler generates the schedule and
optimized code. This code is given as input to Simulator.
None of the existing simulator provides and easy GUI to
enter the processor components and simulate the code for
target host.

Figure1: Simulator based code generation

We are assuming the scheduled and optimize code to be
generated from retargetable compiler and this code along
with the Processor description or Architecture description is
given as input to the Simulator. The Simulator generates the
data in the form of cycle count.

WHAT IS OVPSim

It is simulator to develop software on: Fast Simulation, Free
open source models, easy to use. Imperas developed some
virtual platform and modeling technology to enable
simulating embedded systems running real application code.
These simulations run at speeds of 100s and 100s of MIPS
on typical desktop PCs and are completely Instruction
Accurate and model the whole system. OVP has three main
components - the OVP APIs that enable a C model to be
written, a collection of free open source processor and
peripheral models, and OVPsim a fast, easy to download
and use simulator that executes these models.OVP put
together a simulation model of a platform, compile it to an
executable, and connect it to your debugger to provide a
very efficient fast embedded software development
environment.

The focus of OVP is to accelerate the adoption of the new
way to develop embedded software - especially for SoC and
MPSoC platforms.

 If any software is developed to run in an embedded system
we would normally be using an Instruction Set Simulator
(ISS). As there are multiple processors or cores in design we
need more than just a single ISS. What is needed is a model

Gajendra Kumar Ranka et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 97

of your platform that includes models of all the processors
or cores and models of the peripherals and behavioral
components that the software communicates with. This is a
Virtual Platform, or more simply just a simulation model of
your design. OVP provides the different libraries of
processor and behavioral models, and APIs for building you
own processors, peripherals and platforms. This is just what
is needed to use existing models or build your own, and
OVP is easy to use, open, flexible, and importantly, free for
non-commercial use.

INSTALLATION AND CUSTOMISATION FOR

OVPSim

The Imperas professional tools and the OVP simulator is
installed on Windows Platform. The Imperas tools are a
superset of the OVP tools. Either delete the OVP installation
before installing or install to a different directory. The
Windows versions are provided as installers as an
executable, either

imperas.<version number>.<dot release>.exe or
OVPsim.<version number>.<dot release>.exe or
OVPsim.Windows.exe (for current version from
(www.OVPworld.org).
The following environment variables are automatically set
by the installer:
IMPERAS_HOME Points to the root of the installation .
IMPERAS_VLNV Points to the compiled Library
IMPERAS_ARCH Set to the Host architecture ie Windows
IMPERAS_RUNTIME Specifies which simulator, Imperas
(CpuManager) or OVPsim, to load at runtime
PATH modified to include
IMPERAS_HOME/bin/IMPERAS_ARCH

Figure 2: View the application

The development of platforms, processor and peripheral
models on the Windows operating system has been validated
in an environment using MSYS and MINGW. A default
build environment is provided with both the Imperas tools
and OVPsim installations that will allow models and
platforms to be built in this environment.

We need the installation files of either OVPSim or from
Imperas tools and atleast one compiler toolchain. In order to
cross compile applications under windows the installation of
MSYS/MinGW is done. In our Demo we use the openCores
openRISC MIPS32 as the target embedded processor.

Figure 3: Essential file needed to run application

The OVP and Imperas tools are licensed using FLEXlm.
Tool execution needs a license file. A license file bounds to
individual computer through computer's host ID. OVPsim
looks for its license file in $IMPERAS_HOME/OVPsim.lic

Imperas provides pre-built tool chains for processors by
OVP. The Processors include MIPS32, OR1K and ARM.
The Makefile is available to provide a default build
environment for an application onto a processor. The
Makefiles is in the format <Processor
Type>.Makefile.include.

We need to perform some customization to work on
MIPS32 processors. We are required to create a folder that
contains the entire required file required for execution
process.
(a) Copy the different files to a suitable folder as shown in
Figure 3. Each file is needed as each file has its own
significance.
(b) Change the Makefile to point to MIPS32 processor.
i.e Change the line
 CROSS?=MIPS

Figure 4: How to Compile the application

(c) Create the application.c file and copy the program in
application.c. View the application program as shown in
Figure 2.

Figure 5: How to run the application.

Gajendra Kumar Ranka et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 98

(d) Compile the program as shown in Figure 4. Check for
any error and remove it.
(e) Run the program as shown in figure 5.
(f) The program will generate the different statistics as
shown in Figure 6.

Figure 6: Statistics generated by Simulator

Different programs can be run by altering the contents in
application.c

DEVELOPMENT OF RETARGETABLE

SIMULATOR

Electronic devices built nowadays are often built with a
single IC composed of multitude of hardware blocks that
implement the device functionality. In most cases such
circuit contains one or more processors that enable to
implement a part of the circuit functionality as software that
runs on that processor rather than as a specific hardware
component. Such IC is commonly referred to as a system-
on-a-chip (SoC).
 The main CPU features are:
a. 101 instructions with possible addressing modes
b. CPU with independent stack pointer registers
c. Eight 32-bit data, eight 32-bit address and 32-bit status

registers
d. 16-bit external memory interface
Main assumptions for the ISS were:
a. Developed in pure Visual basic 6.0 language for high

performance.
b. Crystal Report is used as a reporting tool to display the

different status.
c. MS Access is used to Store the different schedules and

optimized code.
d. Single-instruction accuracy, without taking internal

architecture under consideration.
e. Fully static design with the support of loop / wait

statements.
f. Usage of native VB types to gain high simulation speed.
g. Communication interfaces separated from functionality.

The main part which contains implementation of main
processor's logic (ALU, instruction fetch, decoding and
execution routines) together with fields corresponding to the
internal resources (all registers). Sub-module features:

a. Fetching and decoding instructions
b. Instruction processing routines
c. Handling interrupts and exceptions
d. Register implementation and registers read/write access
e. Instruction counter

Simulators are critical components of the exploration toolkit
for the system designer. Simulators can be used to perform a
variety of tasks such as verifying the functionality and / or
timing behavior of the system, and generates quantitative
measurement, for e.g. Cycle count etc. As per our design
Methodology and hypothetical assumption of the
Architecture we have taken MIPS Architecture as a base to
develop our Retargetable simulator. We have given a
Nomenclature to our Simulator as SIM-A {Simulators for
Architectures}.

We will be using Expression Language for Architecture
Description. We have developed the GUI Interface for the
same. We have also provided the GUI for easy evaluation
and analysis.

SIM-A- Basics

SIM-A is a 32-bit datapath, every instruction is 32 bits
wide, and data comes in “words” which are also 32
bits wide. Memory in SIM-A, however, is addressed in
bytes.

SIM-A is load-store architecture that is, the only instructions
that access memory are LW and SW.

Memory Organization

We are considering Two-level memory. The levels are main
memory and cache(s). We are assuming main memory as
Shared Memory. Cache memory is assumed to be local to
each processing element. We are also considering logical
partitions with in that memory. Data begins at virtual
address 0x10000000 and grows in the direction of increasing
virtual addresses (this data is called dynamic data because
the machine doesn’t know how much of it will be used at
runtime). In SIM-A, there is also a concept of stack – that
is, data that starts just below virtual address 0x80000000 and
grows in the direction of increasing virtual addresses.

SIM-A Register Set

Registers are a small set of fast memory that the datapath
has available at its disposal for most immediate operations.
All registers are 32-bit wide. SIM-A contains thirty two
user registers (that is, registers that the user can access/use
in the assembly program) and four special-purpose registers
that are hidden from the user.

SIM-A Instruction Set

This section describes in detail all the SIM-A instructions.

 Rs and Rt are source registers – the datapath should fetch
their values whenever they are used. Source registers are
usually treated as twos-complement signed 32-bit numbers.
In some special cases they are treated as unsigned numbers
(the note that follows explains such circumstances)

Rd is the destination register – the datapath will write the
result to that register number.

Immediate values may either be treated as signed or
unsigned values, and may either be zero-extended (in which
case the padding bits are all zero), or sign extended (in
which case the padding bits are all equal to the most
significant bit of the immediate value).

Gajendra Kumar Ranka et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 99

SOC designs have various design goals. These goals include
minimal cost, maximal performance, low power, high
reliability, etc. Design Space Exploration allows the SOC
designer to make trade-offs between these goals and arrive
at an “optimal” design.SOC designer would like to explore
changes to the architecture or the instruction-set of the
processor-memory system. Common examples of such
changes include, but not limited to:

a. Changing the pipeline structure. e.g., increasing (or
decreasing) the number of stages to increase (or
decrease) the clock frequency, adding forwarding paths
to reduce pipeline stalls.

b. Changing the data path structure. e.g., changing slow
units to fast units in order to increase performance,
changing connectivity between units and storage
elements (like register files) in order to decrease power
consumption.

c. Increasing parallelism. e.g Adding more functional
units that can execute in parallel in order to increase
performance.

d. Changing the instruction-set. e.g Adding new
operations which can be exploited by particular
applications.

e. Changing the memory component. e.g Changing the
size of register file, changing the associativity of the
cache, etc.

f. Changing the memory hierarchy. e.g Adding a cache
between the processor and off-chip memory, changing
the on-chip memory hierarchy etc.

SIM-A Look and Feel

This is the first and main form which helps us to calculate
the cycle count of any program as shown in Figure7.First
section allows us to select the different programs that we are
required to simulate.

Figure 7: GUI for SIM-A Simulator

This is the interface through which user will enter the
processor description and will mimic the behaviour of the
processor. If you click on the option “Select Program to
Run” , it contains all the list of programs. Just select the
program that we need to simulate and Click the button “Run
Simulator and Provide Result ….” Others buttons are not
used right now. Second Section provides the output of the
program. It contains information like total Arithmetic
instruction, Shift rotate, Logical, Jump Branch etc. It also

gives the pop up when the program finishes by providing the
cycle count.

User will first enter the processor description details as
shown in figure 8. Submit the form to update the processor
description file. Then it browses to the GUI form where he
can select the programs that he/She needs to simulate.

Figure 8: GUI for Processor Description

The above is the brief description of the SIM-A Simulator
that has been developed in our Embedded System Lab.

PERFORMANCE ESTIMATES AND VALIDATION

OF SIMULATOR

The Framework is based on MIPS 4K like processor
architecture. The architecture contains five pipeline stages –
fetch, decode, operand read, execute and writeback. There
are five parallel issue paths corresponding to two ALU
Units, one for floating point unit, a branch unit and a
Load/store unit. The memory hierarchy consists of two L1
data caches for instructions and data, a unified L2 cache and
a DRAM main memory. There is a 32-bit wide general
purpose register file and a 32-bit wide floating point register
file, each containing 32 registers.

Table 1: Benchmark Programs along with Description

No Name Description

1
SIM-A-
BENCH#1(SIM1)

Excerpt from a
hydrodynamic code

2
SIM-A-
BENCH#2(SIM2)

Standard Inner product
function of Linear Algebra

3
SIM-A-
BENCH#3(SIM3)

Excerpt from a Tridiagonal
Elimination routine

4
SIM-A-
BENCH#4(SIM4) First Sum

5
SIM-A-
BENCH#5(SIM5) First Difference

Gajendra Kumar Ranka et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 100

Table 1 lists all the benchmarks programs that have been
used to validate the simulators. After running this
benchmark program on the SIMPRESS as well as SIM-A
Simulator, following results are obtained.

Figure 9: Comparative analysis of SIM-A and OVP Simulator of Cycle
Count

Figure 9 show the graphical analysis of the SIM-A and OVP
Simulator.

CONCLUSION AND FUTURE DIRECTION

In this paper we presented a validation of OVPSimulator for
MIPS32 processor with SIM-A Simulator. This also discuss
in detail the OVPSimulator. The different customisation
needed to run the application program has been discussed in
detail.

SIM-A Simulator developed at our embedded Lab generates
the performance estimates for the application under
consideration. Processor description is captured in the form
of GUI, which allows the user to specify the architecture in
visual form. The cycle accurate, structural simulator
generated using SIM-A allows the user to collect statistics
called cycle count. It definitely helps the designer to analyze
the design and modify the critical portions.

he goal of this project is to allow modeling of a wide variety
of processors and memory systems. In order to achieve this
goal, the simulator generator includes very general
mechanisms for capturing processor architectures. But its
usage has to be extended for other class of processors.

The SIM-A environment has been designed to allow
modeling of diverse range of processors. This has been
demonstrated to an extent through the modeling of RISC
processor with traditional memory hierarchies. In future, it
should be used to model novel memory hierarchy and other
classes of processors such as DSP’s.

REFERENCES

[1] Manoj Kumar Jain, M. Balakrishnan, Anshul Kumar.
“ASIP Design Methodologies: Survey and Issues “In
proceedings of the IEEE/ACM International Conference
on VLSI Design. (VLSI 2001)”, pages 76-81, January
2001.

[2] Y Subhash Chandra. Retargetable functional simulator
– M.Tech Thesis, Department of Computer Science, IIT
Kanpur, June 1999.

[3] FREERICK, M. The nML Machine Description
Formalism, July 1993.

[4] JAIN, N.C. Disassemble using High level Processor
Models. Master’s thesis, Department of Computer
Science and Engg, IIT Kanpur, Jan 1999.

[5] UNIX System V Rel 4, Programmers Guide : ANSI C
and Programming Support Tools. PHI, New Delhi
1992. Executable and Linkable format (ELF), Tools
Interface Standards (TIS), Portable Formats
Specification, Version 1.1.

[6] M. Yourst, “Ptlsim.” http://www.ptlsim.org/. Jan.
2010.

[7] “M5.” http://www.m5sim.org. Jan2010.
[8] “bochs: The open source IA-32 emulation project.”

http://bochs.sourceforge.net/. Jan. 2010.
[9] J. Emer, P.Ahuja, and E.Borch, “Asim: A performance

model framework” pp.68-76, 2002.
[10] “Gxemul” http://gxemul.sourceforge.net/ Jan 2010.
[11] P.M et al. , “Simics : A Full system simulation

platform, “ Computer, Vol.35, pp. 50-58, 2002.
[12] D. Wallin, H.Zeffer, M.Karlsson, and E.Hagersten,

“Vasa: A Simulator infrastructure with adjustable
fidelity,” Parallel and Distributed Computing, 2005.

[13] M.M. et al., “Multifacets general execution-driven
multiprocessor simulator (gems) toolset,” SIGARCH
Computer Architecture News, pp. 92-99, 2005.

[14] “SimpleScalar LLC.” http://www.simplescalar.com/,
August 2010

[15] S.M. et al., “Wisconsin wind tunnel ii: A fast and
portable parallel architecture simulator,” Workshop on
performance Analysis and Its Impact on Design, June
1997.

[16] V. Pai, P. Ranganathan, and S.Adve, “Rsim : An
execution-driven simulator for ilp-based shared memory
multiprocessor and uniprocessors,” Third Workshop on
Computer Architecture Education, Feb 1997.

[17] N. Honarmand, H.Sohofi, M. Abbaspour, and Z.Navabi,
“ Processor description in APDL for design space
exploration of embedded processors,” Proc. EWDTS,
2007.

[18] G.H. et al . ,”ISDL : An Instruction set description
language for retargetability,” In proc Design
Automation Conference , pp.299-302,,1997.

[19] Mehrdad Reshadi, Prabhat Mishra, Nikhil Bansal,
Nikhil Dutt. ”Rexsim : A Retargetable framework for
instruction-set architecture simulation” CECS Technical
Report #03-05 ,Feb,2003

[20] M. Reshadi and N.Dutt, “Generic pipedlined processor
modelling and high performance cycle-accurate
simulator generation,” Vol.2, pp. 786-791, 2005.

[21] Y Subhash Chandra. Retargetable functional simulator
–M.Tech Thesis June 1999.

[22] Fedrico Angiolini,;Jianjiang Ceng; Rainer Leuper
;Cesare Ferri;Luca Benini; “An Integrated Open
Framework for Heterogeneous MPSoc Design Space
Exploration”,page3 , Date06,2006 EDAA.

[23] M.Loghi; F.Angioni; D.Bertozzi; L.Benini. “Analyzing
on-chip communication in a MPSoC environment” In
proceeding of the 2004, Design, Automation and test in
Europe Conference (DATE’04), IEEE, 2004.

