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Abstract- In wireless communication for better 
transmission, single carrier waves are being replaced 
by multi carrier signals. OFDM system divides high 
speed serial information signal into multiple lower 
speed sub-signal. Orthogonally spaced sub carriers are 
used to carry the data from the transmitter end to the 
receiver end in high speed wireless system. 
Orthogonality is used between sub carriers to avoid 
ICI (Inter Carrier interference). But the large Peak to 
Average Power Ratio of these signal have some 
undesirable effects on Orthogonal Frequency Division 
multiplexing system. The orthogonal sub carriers will 
increase high PAPR value. High PAPR will lead 
complexity in real time implementation OFDM. The 
existing system analyses the performance of PAPR 
reduction scheme through conventional methods. The 
basic idea of existing algorithm is to divide the original 
OFDM sequence into several sub-sequences and for 
each sub-sequences multiplied by different weights 
until an optimum value is chosen. This will lead to 
high complexity and also increase the number of 
iteration. In this paper we proposed genetic algorithm 
for peak-average-power ratio (PAPR) reduction and 
also reduce its complexity by reducing the number of 
iterations. 
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I.OFDM 
 

          Due to development of mobile communication, 
wireless system need to face a heavy demand of highly 
efficient and high speed communication. OFDM is a 
multicarrier modulation technology which is used in 
broadband wireless communication systems like 
WiMAX, DVB-T and future 4G/LTE systems because it 
has high spectral efficiency and less complexity in 
construction of receiver. OFDM is an effective 
multicarrier transmission technique for wireless 

communications over frequency selective channels using 
an inverse fast Fourier transform (IFFT) and a fast Fourier 
transform (FFT) for the baseband modulation and 
demodulation,  
           This model shows time and frequency 
characteristics of an OFDM signal with 1024 subcarriers. 
As the OFDM signal is the sum of a large number of 
independent, identically distributed components its 
amplitude distribution becomes approximately Gaussian 
due to the central limit theorem. Therefore, it suffers from 
large peak-to-average power ratios. 
 

 
                        Fig. 1. Model of OFDM system. 
 

II.PAPR 
 

          One of the main disadvantages of the OFDM 
systems is the high PAPR of the transmitted signal due to 
the combination of N modulated SCs. An OFDM signal 
consists of  orthogonal subcarriers modulated by 
 parallel data streams. Each baseband subcarrier is of the 
form 

,                                       

(1)      where  is the frequency of the th subcarrier. 
One baseband OFDM symbol (without a cyclic prefix) 
multiplexes  modulated subcarriers. 
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(2) where  is the th complex data symbol 
(typically taken from a PSK or QAM symbol 
constellation) and  is the length of the OFDM 

symbol. The subcarrier frequencies  are equally 

spaced.                                                               
(3)  which makes the subcarriers  on 
 orthogonal. 

A.PAPR on OFDM 
        Generate all possible combinations of weighting 
factor set in the IFFT block. PAPR is defined as the ratio 
between the maximum instantaneous power and its 
average power. At last only optimization will be achieved. 
The PAPR for a continuous-time signal, x(t), is defined as 

                      
(4)                    

          On the other hand, the PAPR for discrete-time 
signals can be estimated by oversampling the data 
sequence d depicted in Fig.1 by a factor L and computing 
LN-points IFFT of the data block with (L − 1)N zero-
padding. The PAPR in this case is defined as 

                                
(5) 
B.CCDF of the PAPR 
        The CCDF is widely used to assess the performance 
of PAPR reduction techniques which is defined as the 
probability that the PAPR is greater than a reference value 
denoted as PAPR0. The CCDF of the PAPR of the 
OFDM signals with N = 1024 SCs and different 
oversampled factor, L = 1, 2 and 4. It is clear that the 
PAPR does not increase considerably after L = 4. 
Therefore, an accurate PAPR estimation for the discrete 
model requires an oversampling factor L > 4. It has been 
shown that the difference between the continuous-time 
and discrete-time PAPR is negligible for L = 4 [31]. 
  

            A straightforward estimated expression for the 
CCDF of the PAPR of an OFDM signal with Nyquist rate 
sampling was derived in [32]. For an OFDM signal with a 
large number of SCs and from the central limit theorem, 
the real and imaginary parts of N-point IFFT output 
samples have a mutually independent and uncorrelated 
Gaussian probability distribution function with zero mean 
and a variance of σ2 = E{|xn|2}/2. Furthermore, the 
amplitude of the OFDM signal has a Rayleigh 
distribution, whereas the power distribution can be 
characterized by a central chi-square distribution with two 
degrees of freedom. The cumulative distribution function 
(CDF) of this distribution is given by 

                            F(z) = 1 − exp(−z).                               
(6) 

 
The probability of the PAPR for a non-oversampling 
data block can be written as 

Pr(PAPR <= z) = F(z)N = (1 − exp(−z))N            (7)           
 

Furthermore, the CCDF of the PAPR can be given by 
CCDF = Pr(PAPR > PAPR0) = 1 − F(PAPR0)N = 1 − (1 

−                          exp(−PAPR0))N, 
 
 while the CCDF for oversampled data block can 
be approximated by adding a certain constant, α,  
 

CCDF = Pr(PAPR > PAPR0) = 1 − (1 − 
exp(−PAPR0))Αn.       (9) 

 
 it can be seen that the CCDF expression is not 
precise for a small number of SCs; for large values of N > 
128 this expression is more precise. 

 
III. GENETIC APPROACH 

Assume we have a discrete search space and a 
function The general problem is to find where the 
function It is usually desirable that c should be a bijection. 
(The important property of a bijection is that it has an 
inverse, i.e., there is a unique vector x for every string s, 
and a unique string s for every vector x.) In some cases 
the nature of this mapping itself creates difficulties for a 
GA in solving optimization problems. Here x is a vector 
of decision variables, and f is the objective function. We 
assume here that the problem is one of minimization, but 
the modifications necessary for a maximization problem 
are nearly always obvious. Such a problem is commonly 
called discrete or combinatorial optimization problems 
(COP). One of the distinctive features of the GA approach 
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is to allow the separation of the representation of the 
problem from the actual variables in which it was 
originally formulated. 

Choose an initial population of chromosomes; 
While termination condition not satisfied do 
 repeat 
  If crossover condition satisfied then 
  [select parent chromosomes; 
  choose crossover parameters; 
  perform crossover]; 
  While mutation condition satisfied then 
  choose mutation points; 
  perform mutation]; 
  evaluate fitness of offspring 
 until sufficient offspring created; 
select new population; 
endwhile  

A.Representation of the Variable 
In line with biological usage of the terms, it has 

become customary to distinguish the ‘genotype’—the 
encoded representation of the variables, from the 
‘phenotype’—the set of variables themselves. That is, the 
vector x is represented by a string s, of length l, made up 
of symbols drawn from an alphabet , using a mapping  In 
practice, we may need to use a search space to reflect the 
fact that some strings in the image of under c may 
represent invalid solutions to the original problem. The 
string length l depends on the dimensions of both and and 
the elements of the string correspond to ‘genes’, and the 
values those genes can take to ‘alleles’. This is often 
designated as the genotype–phenotype mapping. 

B. Chromosomes 
 The original motivation for the GA approach 
was a biological analogy. In the selective breeding of 
plants or animals, for example, offspring are sought that 
have certain desirable characteristics—characteristics that 
are determined at the genetic level by the way the parents’ 
chromosomes combine. In the case of GAs, a population 
of strings is used, and these strings are often referred to in 
the GA literature as chromosomes.  
 
 The recombination of strings is carried out using 
simple analogies of genetic crossover and mutation, and 
the search is guided by the results of evaluating the 
objective function f for each string in the population. 
Based on this evaluation, strings that have higher fitness 
(i.e., represent better solutions) can be identified, and 
these are given more opportunity to breed. It is also 
relevant to point out here that fitness is not necessarily to 

be identified simply with the composition f(c(s)); more 
generally, fitness is h(f(c(s))) where is a monotonic 
function. 
 
 Perhaps the most fundamental characteristic of 
genetic algorithms is that their use of populations of many 
strings. Holland also used mutation, but in his scheme it is 
generally treated as subordinate to crossover. Thus, in 
Holland’s GA, instead of the search moving from point to 
point as in NS approaches, the whole set of strings 
undergoes ‘reproduction’ in order to generate a new 
population.  
 
 DeJong’s work established that population-based 
GAs using crossover and mutation operators could 
successfully deal with optimization problems of several 
different types, and in the years since this work was 
published, the application of GAs to COPs has grown 
almost exponentially. These operators and some 
developments of them are described more fully in part B. 
 
 Crossover is a matter of replacing some of the 
genes in one parent by corresponding genes of the other. 
An example of one-point crossover would be the 
following. Given the parents P1 and P2, with crossover 
point 3 (indicated by X), the offspring will be the pair 01 
and 02: 

 

 
 The other common operator is mutation, in 
which a subset of genes is chosen randomly and the allele 
value of the chosen genes is changed. In the case of 
binary strings, this simply means complementing the 
chosen bits. For example, the string 01 above, with genes 
3 and 5 mutated, would become 1 0 0 1 1 0 1 . A simple 
template for the operation of a genetic algorithm is shown 
in Figure 3.1. The individual parts of this very general 
formulation will be discussed in detail in Part B. 

 
C. Crossover 
 Here again, the German school of ES initially 
did not use populations, and focused almost exclusively 
on ‘mutation’ operators which are generally closer in 
concept to the types of operator used in neighborhood 
search and its extensions. Crossover is simply a matter of 
replacing some of the genes in one parent by the 
corresponding genes of the other. Suppose we have 2 
strings a and b, each consisting of 6 variables, i.e. which 
represent two possible solutions to a problem. (Note that 
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we have chosen here to leave the alphabet unspecified, to 
emphasize that binary representation is not a 
critical aspect of GAs.) One-point crossover (1X) has 
been described earlier; two-point crossover (denoted by 
2X), is very similar. Two cross points are chosen at 
random from the numbers and a new solution produced 
by combining the pieces of the the original ‘parents’. For 
instance, if the cross points were 2 and 4, the ‘offspring’ 
solutions would be 

 
 

D. Mutation 
 Firstly, we note that in the case when crossover-
OR-mutation is used, we must first decide whether any 
mutation is carried out at all. Assuming that it is, the 
concept of mutation is even simpler than crossover, and 
again, this can easily be represented as a bit-string. We 
generate a mask such as  

 
 using a Bernoulli distribution at each locus—
with a small value of p in this case. (The above example 
would then imply that the 2nd and 6th genes are assigned 
new allele values.) However, there are different ways of 
implementing this simple idea that can make a substantial 
difference to the performance of a GA. The naive idea 
would be to draw a random number for every gene in the 
string and compare it to but this is potentially expensive 
in terms of computation if the strings are long and the 
population is large. An efficient alternative is to draw a 
random variate from a Poisson distribution with 
parameter where is the average number of mutations per 
chromosome.  
 
 A common value for is 1—in other words, if l is 
the string length, the (bit-wise) mutation rate is which as 
early as 1964 [85] was shown to be in some sense an 
‘optimal’ mutation rate. Having decided that there are 
(say) m mutations, we draw m random numbers (without 
replacement) uniformly distributed between 1 and l in 
order to specify the loci where mutation is to take place. 
E. New population 
 Holland’s original GA assumed a generational 
approach: selection, recombination and mutation were 
applied to a population of M chromosomes until a new set 
of M individuals had been generated. This set then 
became the new population. From an optimization 
viewpoint this seems an odd thing to do—we may have 
spent considerable effort obtaining a good solution, only 
to run the risk of throwing it away and thus preventing it 
from taking part in further reproduction. For this reason, 

De Jong [5] introduced the concepts of élitism and 
population overlaps. His ideas are simple—an elitist 
strategy ensures the survival of the best individual so far 
by preserving it and replacing only the remaining (M – 1) 
members of the population with new strings.   

 
Overlapping populations take this a stage further 

by replacing only a fraction G (the generation gap) of the 
population at each generation. Finally, taking this to its 
logical conclusion produces the so-called steady-state or 
incremental strategies, in which only one new 
chromosome (or sometimes a pair) is generated at each 
stage. 
 
D. Random Numbers 

 As GAs are stochastic in nature, it is 
clear that a reliable random number source is very 
important. Most computer systems have built-in rand () 
functions, and that is the usual method of generating 
random numbers. Not all random number generators are 
reliable, however, as Ross [95] has pointed out, and it is a 
good idea to use one that has been thoroughly tested, such 
as those described in the Numerical Recipes series. 
 
IV. OPTIMIZATION OF GENETIC APPROACH WITH 

OTHER TECHNIQUE 
 

 

  Fig.3. Conventional vs PTS  
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Fig.3.Conventional vs genetic approac 

V. CONCLUSION AND FUTURE WORK 

This paper perused the concept of covered the 
basic principles of GAs, the number of variations that 
have been suggested is enormous. Many variations in 
population size, in initialization methods, in fitness 
definition, in selection and replacement strategies, in 
crossover and mutation are obviously possible. This can 
add information such as age, or artificial tags, to 
chromosomes; in order to reduce complexity further. 
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