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ABSTRACT: Every Boolean function is uniquely defined by a polynomial modulo 2. The degree of a Boolean 

function is the degree of its defining polynomial. In cryptography, the Boolean functions of fixed degree played 

important role, for example, 1 or 2 degrees. Therefore, in finding algorithms that recognize properties of Boolean 

functions polynomials by their values vectors, it makes sense consider only algorithms that have lower complexity 

order. In this paper, we propose a linear complexity algorithm which determines the vector values a Boolean function 

given, it is a polynomial of fixed degree, and if so constructing this polynomial. 
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I. INTRODUCTION 

Vectorial Boolean Functions for Cryptography which follows, the set {0, 1} will be most often  endowed with the 

structure of  field (and denoted by 2F ), and the set 2

nF of all binary vectors of  length n will be viewed as an 2F -

vectorspace. We shall denote simply by 0 the null vector in 2

nF .  The vectorspace 2

nF  will sometimes be also endowed 

with the structure of  field { the  field 2

nF  (also  denoted by GF(2
n
)) [1]; indeed, this  field being an n-dimensional 

vectorspace over 2F , each of its  elements can be identified with the binary vector of length n of its coordinates relative 

to a  fixed  basis. The set of all Boolean functions f : 2

nF  -> 2F  will be denoted as usual by BFn. The Hamming  weight 

wH(x) of a binary vector 2

nxF  being the number of its nonzero coordinates, the  Hamming weight wH(f) of a Boolean 

function f on 2

nF  is the size of the support of the  function , i.e. the set 2{ / ( ) 0}nx f x F . The Hamming distance 

dH(f, g) between two functions f  and g is the size of the set 2{ / ( ) ( )}nx f x g x F . Thus it equals ( )Hw f g .  

Some additions  of bits will be considered in Z  (in characteristic 0) and denoted then by +, and sometimes will be  

computed modulo 2 and denoted by  . These two dierent notations will be necessary because some representations of 

Boolean functions will live in characteristic 2 and some representations of the  same functions will live in characteristic 

0. But the additions of elements of the  finite  field 
2nF  will  be denoted by +, as it is usual in mathematics. So, for 

simplicity (since  2

nF  will often be identified with 
2nF ) and because there will be no ambiguity, we shall also denote 

by + the addition of vectors  of 2

nF  when n > 1. 

Many constructions of Boolean functions with properties relevant to cryptography are recursive [2, 4, 5,]. The 

efficiency of the constructions relies heavily on the use of appropriate functions of small dimensions. Another 

important method for construction is the random and heuristic search approach [2, 3]. As equivalence classes are used 

to provide restricted input of such optimization algorithms, it is very important to identify which equivalence classes 

obtain functions with desired properties. Methods bounding the degree of polynomial that present boolean functions 

have been important tools in complexity theory. These techniques have been uesd to obtain several results that shed 

light on the complexity of boolean functions. In particular, such polynomial degree lower bounds consequences for the 

constant-depth circuit  complexity of the associated boolean functions. 

Let the Boolean function written vector of its values with N = 2
n
 coordinates, where n - number of variables of the 

function. It is known that the values vector of a Boolean function of a polynomial can be found with complexity O (N 

logN) [7]. Therefore, in finding algorithms that recognize properties of Boolean functions polynomials by their values 

vectors, it makes sense consider only algorithms that have lower order of complexity. In this paper we propose a linear 
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complexity algorithm which determines the vector values a Boolean function given, it is a polynomial of fixed degree, 

and if so constructing this polynomial. 

 

II. REPRESENTATION OF BOOLEAN FUNCTIONS 

Among the classical representations of Boolean functions, the one which is most usually used in cryptography and 

coding is the n-variable polynomial representation over F2, of the form: 

( ) ( )
( ) I

I i I
I P N I P N

i I

f x a x a x
 



 
    

 
 ,      (1) 

Where P(N) denotes the power set of  N = {1, …, n}. Every coordinate xi appears in this polynomial with exponents 

at most 1, because every bit in 2F equals its own square. This representation belongs to 

2 2

2 1 1 1[ ,..., ] / ( ,..., )n n nx x x x x x F . It is called the Algebraic Normal Form (in brief the ANF). 

Another possible representation of this same ANF uses an indexation by means of vectors of 2

nF  instead of subsets 

of N; for any such vector u, we denote by au what is denoted by asupp(u) in relation (1) (where supp(u) denotes the 

support of u), we have the equivalent representation: 

       (2) 

The monomial 
1

i
n u

jj
x

  is often denoted by x
u
. 

 

2.1. Relationship between a Boolean function and its ANF. 

The product 
I

ii I
x x


 is nonzero if and only if xi is nonzero (i.e. equals 1) for every i I , that is, if I is 

included in the support of x; hence, the Boolean function 
( )( ) I

I P N If x a x takes value. 

        (3) 

where supp(x) denotes the support of x. If we use the notation 
2

( ) n

u

uu
f x a x




F
, we obtain the relation 

( ) u x uf x a  , where u ≤ x means that supp(u)   supp(x) (we say that u is covered by x). A Boolean function f 
0
 

can be associated to the ANF of f: for every 2

nxF , we set 
0

( )( ) supp xf x a , that is, with the notation 

2

0( ) : ( )n

u u

uu
f x a x f u a


 

F
. Relation (3) shows that f is the image of f 

0
  by the so-called binary Mobius 

Transform. 

The converse is also true: 

Proposition 1: Let  f  be a Boolean function on 2

nF  and let 
( )

I

I P N Ia x be its ANF. We have: 

2 / ( )
( ), ( ).

nI
x supp x I

I P N a f x
 

   
F

             (4) 

Proof. Let us denote 
2 / ( )

( ).
nx supp x I

f x
 


F

by bI and consider the function 
( )( ) I

I P N Ig x b x . We have 

 
and thus 
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The sum ( )/ ( ) ( )1I P N supp y I supp x    is null if y ≠ x, since the set { ( ) / supp(y) I supp(x)}I P N    contains 

( ) ( )
2 H Hw x w y

elements if supp(y)   supp(x), and none otherwise. Hence, g = f and, by uniqueness of the ANF, bI = 

aI for every I. 

 

2.2. The degree of the ANF. 

It is denoted by d
0
f and is called the algebraic degree of the function (this makes sense thanks to the existence and 

uniqueness of the ANF): 
0 max{| | / 0}Id f I a  , where |I| denotes the size of I. Some authors also call it the 

nonlinear order of  f. According to Relation (4), we have: 

Proposition 2: The algebraic degree d
0
f of any n-variable Boolean function f equals the maximum dimension of the 

subspaces 2{ / ( ) }nx supp x I F  on which f takes value 1 an odd number of  times.  

The algebraic degree is an affine invariant (it is invariant under the action of the general affine group): for every 

affine isomorphism L: 

1 1 1

2 2 2

2 2. . .

. . .

n n

n n n

x x a

x x a

M

x x a

     
     
     
        
     
     
     
     

F F   

(where M is a nonsingular n x n matrix over 2F ). We have d
0
(f o L) = d

0
f. Indeed, the composition by L clearly cannot 

increase the algebraic degree, since the coordinates of L(x) have degree 1. Hence we have d
0
(f o L) ≤ d

0
f (this inequality 

is more generally valid for every affine homomorphism). And applying this inequality to f o L in the place of f and to L
-

1
 in the place of L  hows the inverse inequality. Two functions f and f  o L where L is an 2F - linear automorphism of 

2

nF (in the case a1 = a2 = … = an = 0 above) will be called linearly equivalent and two  functions f and     f  o L, where 

L is an affine automorphism of 2

nF , will be called affinely equivalent.  

The algebraic degree being an affine invariant, Proposition 2 implies that it also equals the maximum  dimension of 

all the affine subspaces of 2

nF on which f takes value 1 an odd number of times.  

 

III. THE REPRESENTATION OVER THE REALS 

Boolean function has proved itself to be useful for characterizing several cryptographic criteria [8, 9]. It represents 

Boolean functions, and more generally real-valued  functions on 2

nF (that are called n-variable pseudo-Boolean 

functions) by elements of 
2 2

2 1 1 1[ ,..., ] / ( ,..., )n

n n nx x x x x x F  (or of 
2 2

1 1 1[ ,..., ] / ( ,..., )n n nx x x x x x Z for 

integer-valued functions). We shall call it the Numerical Normal Form (NNF). 

The existence of this representation for every pseudo-Boolean function is easy to show with the  same arguments as 

for the ANFs of Boolean functions (writing 1 – xi instead of 1 ix ). The linear  mapping from every element of the 2
n
-

th dimensional 2

nF - vectorspace 
2 2

2 1 1 1[ ,..., ] / ( ,..., )n

n n nx x x x x x F  to the corresponding pseudo-Boolean function 

on 2

nF , it is therefore one to one (the 2

nF - vectorspace of pseudo-Boolean functions on 2

nF  having also dimension 2
n
). 

We deduce the uniqueness of the NNF. 

We call the degree of the NNF of a function its numerical degree. Since the ANF is the mod 2  version of the NNF, 

the numerical degree is always bounded below by the algebraic degree. It is  shown in [4] that, if a Boolean function  f  

has no ineffective variable (i.e. if it actually depends on each of its variables), then the numerical degree of f is greater 

than or equal to 2 2 2log log logn n .  

The numerical degree is not an affine invariant. But the NNF leads to an affine invariant (see a proof of this fact in 

[8]; see also [10])  which is more discriminant than the algebraic degree:  
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Denition 1: Let f be a Boolean function on 2

nF . We call generalized degree of  f the sequence 1( )i id   defined as 

follows: for every i ≥ 1, di is the smallest integer di > di-1 (if  i > 1) such that, for every multi-index I of size strictly 

greater than d, the coefficient I  of x
I
 in the NNF of  f is a multiple of 2

i
. 

Example: the generalized degree of any nonzero ane function is the sequence of all positive  integers.  

Similarly as for the ANF, a (pseudo-) Boolean function 
( )

( ) I

II P N
f x x


  takes value: 

        (5) 

But, contrary to what we observed for the ANF, the reverse formula is not identical to the direct formula: 

Proposition 3: Let f be a pseudo-Boolean function on 2

nF  and let its NNF be 
( )

I

II P N
x

 . Then: 

2

( )| |

| ( )

( ),

( 1) . ( 1) ( )H

n

w xI

I

x supp x I

I P N

f x
 

 

  
F

.    (6) 

Thus, function f and its NNF are related through the Mobius transform over integers. 

Proof. Let us denote the number 

2

( )| |

| ( )

( 1) . ( 1) ( )H

n

w xI

x supp x I

f x
 

 
F

 by I and 

consider the function 
( )

( ) I

II P N
g x x


 . We have  

2

( )

( )

( ) | ( )

( )

( 1) ( 1) ( )H

n

I

I supp x

w yI

I supp x y supp y I

g x

f y




  

 

 
    

 



 
F

 

and thus 

2

( )

| |

( )/ ( ) ( )

( ) ( 1) ( )

( 1)

H

n

w y

y

I

I P N supp y I supp x

g x f y


  

  

 
  
 





F

 

The sum 
| |

( )/

( 1) I

I P N supp(y) I supp(x)  

 is null if ( )supp y  ( )supp x . It is also null if supp(y)  is included in 

supp(x), but different. Indeed, denoting |I| - wH(y) by i, it equals  
( ) ( )

0

( ) ( )

( ) ( )
( 1)

(1 1) 0

H H

H H

w x w y
H H i

i

w x w y

w x w y

i







 
   

 

   


 

Hence, g = f and, by uniqueness of the NNF,  we have I I   for every I.  

Proposition 4: Any polynomial P 
2 2

2 1 1 1[ ,..., ] / ( ,..., )n

n n nx x x x x x F  is the NNF of an integer-valued 

function if and only if all of its coefficients are integers. Assuming that this condition is satisffied, P is the NNF of a 

Boolean function if and only if:

2 2

2( ) ( )
n nx x

P x P x
 

 
F F

. 

Proof. The first assertion is a direct consequence of relations (5) and (6). If all the coefficients of P are  integers, then 

we have P
2
(x) ≥ P(x) for every x; this implies that the 2

n
 equalities, expressing that  the corresponding function is 

Boolean, can be reduced to the single one 

2 2

2( ) ( )
n nx F x F

P x P x
 

   
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IV. APPROACH AND CONSTRUCT ALGORITHM. 

Let B = {0, 1}, V
n
 - set of vectors of  length n with the coordinates of the set B. Boolean function is a mapping. 

:n nf V B ,  n = 0, 1, 2, … 

The set of all Boolean functions depending on n variables, denoted as nF . 

Monotone elementary conjunction is called the product of distinct variables without negations. The rank of a 

monotone elementary conjunction is the number of variables. We assume a degenerate monotone elementary 

conjunctions of rank 0. Every Boolean function can be written uniquely form 1

l

ii
X


, where Xi - distinct monotone 

elementary conjunctions, the summation is mod 2. The degree of the polynomial is the greatest rank of its terms. 

We say that a function f (x1, ..., xn) belongs to the class Cm, m = 0, 1, 2, ..., if it is given a polynomial of degree m. 

Obviously, the class C0 only contains constants 0 and 1, class C1 is the class L of linear functions. 

We call the derivative of  f (x1, ..., xn) with respect to xi function  fxi (x1, ..., xn), equal 

1 1 1 1 1 1( ,..., ,0, ,..., ) ( ,..., ,1, ,..., ).i i n i i nf x x x x f x x x x     

Theorem 1. The function f (x1, ..., xn) belongs to the class Cm, m> 1, if and only if for each variable xi, i = 1, ... , n, 

function fxi (x1, ..., xn) belongs to Cm-1. 

Proof. Follows from the definition of a derivative and a unique representation of a Boolean function by a polynomial. 

Let the Boolean function f (x1, ..., xn) is given a vector of its values αf on the sets listed in lexicographic order. The 

number of coordinates αf  equal to N = 2
n
. 

Theorem 2. There exists an algorithm to the vector αf with complexity O (N) determines whether the function f (x1, 

..., xn) be linear, and, if so, it builds a polynomial. 

Proof. Consider the following algorithm. 

i := 1; 

fi (xi, …., xn) := f (x1, …., xn); 

p (xi, …., xn) := f (0, …., 0). 

Beginning of the cycle. 

1. Building a derivative fi xi (xi, ..., xn): divide the vector αf i  in two and summarize the coordinate-wise. At the 

same time will be spent 2
n-i+1

 operations. 

2. if 

• fxi (xi, ..., xn) ≡ 1, then p (x1, ..., xn): = p (xi, ..., xn) ⊕ xi; 

• fxi (xi, ..., xn) ≡ 0, then p (x1, ..., xn) remain unchanged; 

• Otherwise - the algorithm terminates and the answer is "nonlinear function - linearly.  

3. i: = i + 1, fi (xi, ..., xn) = fi-1 (0, xi, ..., xn),. To construct a vector αf i  requires 2
n-i+1

 operations. 

4. if 

• i > n, then the algorithm terminates, the answer is "linear function" and it’s written in the polynomial p (x1, 

..., xn); 

• Otherwise - go to the top of the loop. 

The correctness of the algorithm follows from Theorem 1. 

We calculate the complexity of the algorithm. it is 

 
Theorem 3. Given a number m> 1. There exists an algorithm for vector αf complexity O (N) determines whether an 

function f (x1, ..., xn) to the class Cm, and, if so, it builds a polynomial. 

Proof. We construct the desired algorithm Am inductively. The basis of induction. Let m = 1. Then, as the algorithm A1 

will consider the algorithm described in Theorem 2. Its complexity is equal to 2 . 2
n
. 

Inductive step. Suppose that the algorithm Am-1 has already constructed, and its complexity is equal to Cm-1. 2
n
 , 

where Cm-1 - is a constant. Consider an algorithm Am is as the following: 

i := 1; 

fi (xi, …., xn) := f (x1, …., xn); 

p (xi, …., xn) := f (0, …., 0). 

Beginning of the cycle. 

1. Building a derivative fi xi (xi, ..., xn): divide the vector αf i in two and summarize the coordinate-wise. At the 

same time will be spent  2
n-i+1

 operations. 

2. With algorithm Am-1 checks whether the function fxi (xi, ..., xn) class Cm-1. 

if 

• Answer "yes" and a polynomial p (x1, ..., xn), then 

1 1 1( ,....., ) : ( ,....., ) . ( ,...., ).n n i nP x x P x x x p x x   
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• Otherwise, the algorithm terminates and the answer is "function does not belong to Cm”. 

In Step 2, we have spent Cm-1.2
n-i+1

 operations. 

3. i: = i + 1, fi (xi, ..., xn) = fi-1 (0, xi, ..., xn). For constructing vector αf i requires 2
n-i+1

 operations. 

4. if 

• i > n, then the algorithm terminates, the answer is "The function of class Cm” and it’s written in the 

polynomial P(x1, ..., xn); 

• Otherwise - go to the top of the loop. The correctness of the algorithm follows from Theorem 1. We calculate 

the complexity of the algorithm.  

It is 
1

1 1( 1).(2 2 ... 1) 2.( 1).2 .2n n n n

m m mC C C

         where Cm - a constant. So 

1 12.( 1), 2m mC C C   . It is easy to calculate that Cm = 2.2
m
. Consequently, the complexity of the algorithm is 

(2.2
m
).2

n
 = O(N), since the number m - fixed. 

V. CONCLUSION. 

In this paper we have shown that many classical notions, constructs algorithms that recognize properties of Boolean 

functions polynomials by their values vectors, it makes sense consider only algorithms that have lower complexity 

order. Linear complexity algorithm which determines the vector values a Boolean function given, it is a polynomial of 

fixed degree. These results are applied for the theory of cryptographic properties of Boolean functions. 
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