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Abstract: 

 

Cluster analysis aims at solving the following very general 

problem: given a set of entities, find subsets (also called 

clusters) which are homogeneous and well separated. 

Homogeneity means that similar entities should belong to 

the same cluster. Separation means that dissimilar entities 

should belong to different clusters. This concept can be 

expressed mathematically in many ways. Hence, many 

heuristics and exact algorithms have been proposed. This 

problem is the main one in data mining with applications to 

a large variety of fields. Using the sum of squares of errors 

in clustering was already proposed by Steinhaus and co-

workers in 1935. Since then, many heuristics and exact 

algorithms have been proposed for its resolution. Perhaps 

the most well-known most studied and most often applied in 

data mining is the minimum sum of squares clustering. 

Progress in the design of heuristics and, more recently, of 

exact algorithms has been substantial. All the algorithms are 

a branch and bound type (Ed-wards and Cavalli-Sforza 

1965, Koontz, Narendra and Fukunaga 1975, Diehr 1985). 

A very important contribution is the K-means heuristic due 

to Llyod (first developed in 1957, published only 1982) and 

independently to Forgy (1965) and to MacQueen (1967). It 

works as follows: (1) choose an initial set of entities as 

cluster centers; (2) assign each entity to the closest center; 

(3) update the current centers by considering the centroids 

of the clusters; (4) return to step (2) as long as there is a 

modification in the centers. Despite a very substantial 

success (over 8525 citations of Lloyd’s paper, according to 

Google Scholar), there are some difficulties in its 

application: (i) the number of clusters is not known A 

PERIORI, (ii) there is a strong dependency of the results on 

the initial choice of cluster centers, (iii) some clusters may 

disappear during the process. Many proposals have been made 

to alleviate these difficulties. Recent progress includes the use 

of metaheuristics: Variable Neighborhood Search Hansen and 

Mladenovi´c 1997, 2001), Tabu Search (Glover 1989) and 

GRASP (Fea and Resende 1989, 1995). Exact methods for the 

minimum sum of squares problems have also been developed. 

They include column generation (du Merle et al. 1999), 

cutting plans (Peng and Xia 2005), dynamic programming 

(Van Os and Meul-man 2004, Jensen 1969), DC programming 

(Tao 2007), and concave minimization (Bagirov 2008), 

Relation Linearization Technique (Sheraldi and Desai 2005). 

Merging branch and bound with an adaptation of a location 

problem, i.e.: Weber’s problem with maximum distance led to 

substantial progress in exact resolution: the size of the largest 

instance solved exactly was raised from 220 to 2392 entities. 

The minimum sum-of-squared error clustering problem is 

shown to be a concave continuous optimization problem 

who’s every local minimum solution must be integer. We 

characterize its local minima. A procedure of moving from a 

fractional solution to a better integer solution is given. Then 

we adapt Tuy’s convexity cut method to find a global 

optimum of the minimum sum-of-squared error clustering 

problem. We prove that this method converges in finite steps 

to a global minimum. Promising numerical examples are 

reported.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


