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ABSTRACT: The Copper treatment caused loss (70 %) of chlorophyll content in maize primary leaves. The 
electron transport activity measurements clearly demonstrated that the existence of multiple sites inhibition in  
thylakoid membranes. Between two photosystems, photosystem II seems to be more susceptible to copper 
toxicity (50 µM), than that of photosystem II.
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NTRODUCTION
Heavy metals inhibit photosynthetic electron transport activities at different target sites [1 and 2]. Majority of 
the studies was made in isolated systems. All these studies are indicating that PS II catalyzed electron transport  
is more sensitive to heavy metals [4 - 8]. Several people showed that Zn and Cu induced inhibition is dependent  
on the illuminated light intensity [9 and 6]. 
Compare to PS II, PS I catalyzed electron transport has been reported to be more resistant to the heavy metals 
[10 and 5]. Cu and Pb are able to inhibit the PS I activity at much elevated concentrations [11]. Hg is able to  
inhibit the PS I activity at multiple sites PCy [12 and 13], at the level of reaction center of PS I, P 700 [14], Fd and 
FNR [4] and   Fe-S centers [15]. Hence an attempt has been made to study the effect of heavy metal (Cu) ions in 
a  comparative manner on the photosynthetic  electron  transport  activities  in  thylakoid  membranes of maize 
leaves.

MATERIALS AND METHODS
Plant growth and treatment:
Healthy seeds of maize were obtained from Acharya N.G. Ranga Agricultural University, Hyderabad. The seeds 
were surface sterilized with 0.1% HgCl2 for 2 min and thoroughly washed with tap water and then with distilled 
water. The seeds were imbibed for 6 h and germinated in petridishes on filter paper for 3 days. The seedlings  
were randomly placed in plastic trays and watered daily with quarter strength Hoagland nutrient solution and 
grown in growth chamber providing with fluorescent light (Philips, India) with a light intensity of 30-35 µmoles 
m-2s-1 at 25 ± 1°C. Seedlings were treated with different concentrations of CuCl2 (50,100 and 150 µM) after 4th 

day of germination. Plants were harvested after 3 days (7 th day old) of heavy metal treatment were used for 
estimation of chlorophyll (Chl) and electron transport activities. Similar set of experiments were also performed 
for the control sample without heavy metal treatment. The experiment was repeated four times to determine 
each parameter.
Estimation of chlorophyll:
0.1 g of maize leaf segments were homogenized in a pre-chilled mortar and pestle in 10 ml of 80% chilled 
acetone. The homogenate was transferred into 15 ml centrifuge tubes and centrifuged at 3000 xg for 5 min. The 
Chl concentration was measured from supernatant after it dilution to a total volume of 15 ml by following the  
method of Arnon [16].
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Photosynthetic electron transport activities
Electron  transport  activities  of  control  and  treated  thylakoid  membranes  were  assayed using  a  Clark  type 
oxygen electrode (Hansatech, UK) following Sabat et al. [17]. Thylakoid membranes were isolated according to 
the procedure similar to that of Saha and Good [18] as described in Swamy et al. [19] with some modifications. 
PS II catalyzed electron transport activity was measured as O2 evolution in 2 ml reaction buffer consisting of 
[50 mM HEPES (N-2-Hydroxyethyl Piperazine-N' Ethane Sulphonic acid) - NaOH (pH 7.5), 100 mM sucrose,2 
mM MgCl2 and 5 mM KCl], 0.5 mM freshly prepared p - Benzoquinone (p-BQ) and thylakoid membranes 
equivalent to 40 mg of Chl. For WEC activity the reaction buffer contained 0.5 mM methyl viologen (MV), 1.0  
mM of Sodium (Na) - azide, while the PS I reaction mixture contained 0.5 mM MV, 1.0 mM Na-azide, 0.1 mM 
2,6- dichlorophenol indophenol (DCPIP), and 10 µM dichloro methyl urea and thylakoid membranes equivalent 
to 40 mg of Chl in reaction buffer.

RESULTS
In this  article  the effect  of CuCl2 (50-150µM) has been studied by isolating the thylakoid membranes and 
estimating the Chl content. Cu treatment caused the decrease in the Chl content both a + b (upto 70%) (Table 
1). The possible reason for the decrease of Chl content could be the inhibition effect of Cu on Chl biosynthetic  
enzymes [1]. Similarly effect of lead (Pb) in seedlings of Bajra has been reported by Prasad and Prasad [20].  
After studying the effect on pigments, a study has been made regarding the effect of Cu on photosynthetic 
electron  transport  activities  in  maize  thylakoids  after  Cu  treatment  caused  50% inhibition  in  whole  chain 
electron transport activity at 100 µM. Further raise concentration brought 71%loss in the activity (Table 2). The  
reason for the whole chain electron transport could be alteration either at PS I and PS II [21 and 8] To verify  
above preposition  an  attempt  has  been made  to  characterize  the  effect  of  Cu on  PS II  catalyzed electron 
transport activity (Table 3). Cu treatment induced 45% of loss at 50 µM and further rise to 150 µM induced  
85% inhibition.  The  reason for  the  inhibition  in  PS II  activity  could  be due to  alterations  either  at  water 
oxidation complex (WOC) or at PS II reaction centre [6 and 8]. To role out the susceptibility of PS I, electron 
transport activities were measured using maize thylakoids both control and Cu treated samples (Table 4). In PS 
I catalyzed electron transport is less susceptible to Cu toxicity. At 150 µM concentration only 22% loss was 
noticed. The reason for the loss of PS I catalyzed electron transport could be due to its action on reaction centre, 
P700 in maize thylakoids. Thus Cu treatment affects photosynthetic electron transport in maize thylakoids at 
multiple sites.
Table 1: Effect of CuCl2 on Total Chl (a+ b) (mg /g fw) content in maize leaf segments. Each value is Mean 

± SE of four replications
Parameter Concentration

(µM)
Total Chl ( a+ b)

(mg /gm fw)
Percentage of  loss

Control - 2.43 ± 0.02 0

CuCl2

50 1.88 ± 0.05 22

100 1.17 ± 0.02 51
150 0.72 ± 0.01 70

Table 2: Effect of CuCl2 on WCE (µ moles (O2 consumed) mg-1 Chl h-1] activities in maize leaf segments. 
Each value is Mean ± SE of four replications

Paramete
r

Concentration
(µM)

WCE activity
(H2O —> MV)

Percentage of  loss

Control - 175 ± 5 0

CuCl2

50 131 ± 9 25

100 82 ± 7 53
150 51 ± 6 71
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Table 3: Effect of CuCl2 on PS II catalyzed electron transport activity [µ moles (O2 evolved) mg-1 Chl h-1] 
in maize leaf segments. Each value is Mean ± SE of four replications.

Parameter Concentration
(µM)

PS II activity
(H2O —> p-BQ)

Percentage of  loss

Control - 312 ± 4 0

CuCl2

50 172 ± 8 45

100 97 ± 9 69
150 56 ± 3 82

Table 4: Effect of CuCl2 on PS I electron transport activity [µ moles (O2 consumed) mg-1 Chl h-1] in maize 
leaf segments. Each value is Mean ± SE of four replications.

Parameter Concentration
(µM)

PS I activity
(DCPIPH2 —> MV)

Percentage of  loss

Control - 450 ± 13 0

CuCl2

50 405 ± 10 10

100 369 ± 16 18
150 351 ± 10 22
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